WEIGHT-BEARING CONTROLS GLYCOSAMINOGLYCAN CONCENTRATION AND ARTICULAR CARTILAGE THICKNESS IN THE KNEE JOINTS OF YOUNG BEAGLE DOGS

1988 ◽  
Vol 8 (1) ◽  
pp. 120
Author(s):  
I. Kiviranta ◽  
J. Jurvelin ◽  
M. Tammi
1987 ◽  
Vol 30 (7) ◽  
pp. 801-809 ◽  
Author(s):  
Ilkka Kiviranta ◽  
Jukka Jurvelin ◽  
Markku Tammi ◽  
Anna-Marja SääMäunen ◽  
Heikki J. Helminen

1977 ◽  
Author(s):  
J.E. Handelsman ◽  
A.L. Lurie ◽  
J.J. Rippey ◽  
R.R. Hill ◽  
M.B.E. Sweet ◽  
...  

Surgical exploration of eight chronically afflicted haemophilic knee joints in patients aged 6 to 31 years, has revealed a pattern of progressive arthropathy.Significant synovial changes occurred very early. Cellular overgrowth produced thickening, convolution and increased vascularity. Haemosiderin was deposited heavily in all cell layers. Fibrosis ultimately contracted the synovium.Chronic inflammation produced epiphyseal overgrowth. Initially, articular cartilage changes resembled chondromalacia, but fissuring soon occurred and ultimately cartilage was totally lost over central weight-bearing areas and in the intercondylar region. Anomalies of matrix, chondrocyte aggregation and death, and subchondral round cell infiltration were features. Haemosiderin staining was sparse, occurring only in some chondrocytes and infiltrating cells.Biochemical analysis of articular cartilage biopsies revealed a severe depletion of glycosaminoglycans. There was no biochemical evidence of a reaction of repair.Articular cartilage damage occurred mainly between the ages of 6 and 10 years. This evidence suggests that early surgical synovectomy may arrest the process that produces progressive joint destruction.


Author(s):  
Mallikarjunaswamy Shivagangadharaiah Matada ◽  
Mallikarjun Sayabanna Holi ◽  
Rajesh Raman ◽  
Sujana Theja Jayaramu Suvarna

Background: Osteoarthritis (OA) is a degenerative disease of joint cartilage affecting the elderly people around the world. Visualization and quantification of cartilage is very much essential for the assessment of OA and rehabilitation of the affected people. Magnetic Resonance Imaging (MRI) is the most widely used imaging modality in the treatment of knee joint diseases. But there are many challenges in proper visualization and quantification of articular cartilage using MRI. Volume rendering and 3D visualization can provide an overview of anatomy and disease condition of knee joint. In this work, cartilage is segmented from knee joint MRI, visualized in 3D using Volume of Interest (VOI) approach. Methods: Visualization of cartilage helps in the assessment of cartilage degradation in diseased knee joints. Cartilage thickness and volume were quantified using image processing techniques in OA affected knee joints. Statistical analysis is carried out on processed data set consisting of 110 of knee joints which include male (56) and female (54) of normal (22) and different stages of OA (88). The differences in thickness and volume of cartilage were observed in cartilage in groups based on age, gender and BMI in normal and progressive OA knee joints. Results: The results show that size and volume of cartilage are found to be significantly low in OA as compared to normal knee joints. The cartilage thickness and volume is significantly low for people with age 50 years and above and Body Mass Index (BMI) equal and greater than 25. Cartilage volume correlates with the progression of the disease and can be used for the evaluation of the response to therapies. Conclusion: The developed methods can be used as helping tool in the assessment of cartilage degradation in OA affected knee joint patients and treatment planning.


Author(s):  
Qinglin Meng ◽  
Mengqi Liu ◽  
Weiwei Deng ◽  
Ke Chen ◽  
Botao Wang ◽  
...  

Background: Calcium-suppressed (CaSupp) technique involving spectral-based images has been used to observe bone marrow edema by removing calcium components from the image. Objective: This study aimed to evaluate the knee articular cartilage using the CaSupp technique in dual-layer detector computed tomography (DLCT). Methods: Twenty-eight healthy participants and two patients with osteoarthritis were enrolled, who underwent DLCT and magnetic resonance imaging (MRI) examination. CaSupp images were reconstructed from spectral-based images using a calcium suppression algorithm and were overlaid conventional CT images for visual evaluation. The morphology of the knee cartilage was evaluated, and the thickness of the articular cartilage was measured on sagittal proton density– weighted and CaSupp images in the patellofemoral compartment. Results: No abnormal signal or density, cartilage defect, and subjacent bone ulceration were observed in the lateral and medial femorotibial compartments and the patellofemoral compartment on MRI images and CaSupp images for the 48 normal knee joints. CaSupp images could clearly identify cartilage thinning, defect, subjacent bone marrow edema, and edema of the infrapatellar fat pad in the same way as MRI images in the three knee joints with osteoarthritis. A significant difference was found in the mean thickness of the patellar cartilage between MRI images and CaSupp images, while the femoral cartilage presented no significant difference in thickness between MRI images and CaSupp images over all 48 knee joints. Conclusion: The present study demonstrated that CaSupp images could effectively be used to perform the visual and quantitative assessment of knee cartilage.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 110.1-110
Author(s):  
S. Nysom Christiansen ◽  
F. C. Müller ◽  
M. Ǿstergaard ◽  
O. Slot ◽  
J. Møllenbach Møller ◽  
...  

Background:Dual energy CT (DECT) has diagnostic potential in gout patients. DECT can automatically colour-code presumed urate deposits based on radiodensity (Hounsfield Units, HU) and DECT ratio (difference in attenuation between high and low kV series) of lesions. However, other materials may imitate properties of urate deposits, most importantly calcium-containing material, dense tendons and artefacts, which may lead to misinterpretations. The characteristics of DECT lesions in gout patients have not yet been systematically investigated.Objectives:To evaluate the properties and locations of colour-coded DECT lesions in gout patients.Methods:DECT were performed in patients with suspected gout. Patients were separated into gout and non-gout patients based on joint fluid microscopy findings. DECT of the hands, knees and feet were performed using default gout settings and colour-coded lesions were registered. Only location-relevant lesions were analysed (e.g. nail bed artefacts excluded). Mean density (mean of HU at 80 kV and Sn150 kV), mean DECT ratio, size and location of each lesion was determined.Subgroup analysis was performed post-hoc evaluating potential differences in properties and locations of lesions. Lesions were separated into groups according to properties (Figure 1, grey box): 1)Size—to separate artefacts characterised by small volume (possible artefacts). 2)DECT ratios—to separate calcium-containing material characterised by high DECT ratio (possible calcium-containing material). 3)Density—to separate dense tendons characterised by low DECT ratio and low HU values (possible dense tendons). Lesion fulfilling all urate characteristics (large volume, low DECT ratio, high density) were labelleddefinite urate deposits. Finally, for non-gout patients, properties ofnon-gout urate-imitation lesions(properties asdefinite urate deposits) were analysed.Results:In total, 3918 lesions (all lesions) were registered in gout patients (n=23), with mean DECT ratio 1.06 (SD 0.13), median density 160.6 HU and median size 6 voxels (Figure 1, blue box). Lesions were seen in all analysed joints, most frequently MTP1 joints (medial side), knee joints and midtarsal joints (Figure 2a). Tendon affections were also common, especially in the knee tendons (patella and quadriceps), malleolus-related tendons (e.g. peroneus and tibialis posterior) and the Achilles tendons (Figure 2a).Subgroup analyses showed thatdefinite urate deposits(figure 2b) were found at the same locations asall lesionin gout patients (figure 2a), with the four most common sites being MTP1 joints, midtarsal joints, and quadriceps and patella tendons (Figure 2b).Possible dense tendonlesions had a mean HU value of 156.5 HU—markedly higher than expected for dense tendons (<100HU)—and lesion-locations were similar todefinite urate deposits(data not shown), indicating that they primarily consisted of true urate deposits. In contrast,possible calcium-containing materialandnon-gout urate-imitating lesionshad distinctly different properties (ratios 1.33 and 1.20, respectively) (Figure 1, yellow and orange box). Furthermore, the locations of these lesions were different fromdefinite urate depositssince they were primarily found in a few weight-bearing joints (knee, midtarsal and talocrural including malleolus regions) and tendons (Achilles and quadriceps), whereas no lesions were found in either MTP1 joints or patella tendons (figure 2c).Conclusion:DECT color-coded lesions in gout patients are heterogeneous in properties and locations. Subgroup analyses found that locations such as MTP1 joints and patella tendons were characterised by almost only showingdefinite urate deposits. A sole focus on these regions in the evaluation of gout patients may therefore improve specificity of DECT scans.Disclosure of Interests:Sara Nysom Christiansen Speakers bureau: SNC has received speaker fees from Bristol Myers Squibb (BMS) and General Electric (GE)., Felix C Müller Employee of: Siemens Healthineers., Mikkel Ǿstergaard Grant/research support from: AbbVie, Bristol-Myers Squibb, Celgene, Merck, and Novartis, Consultant of: AbbVie, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Eli Lilly, Hospira, Janssen, Merck, Novartis, Novo Nordisk, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, and UCB, Speakers bureau: AbbVie, Bristol-Myers Squibb, Boehringer Ingelheim, Celgene, Eli Lilly, Hospira, Janssen, Merck, Novartis, Novo Nordisk, Orion, Pfizer, Regeneron, Roche, Sandoz, Sanofi, and UCB, Ole Slot: None declared, Jakob Møllenbach Møller: None declared, Henrik F Børgesen: None declared, Kasper K Gosvig: None declared, Lene Terslev Speakers bureau: LT declares speakers fees from Roche, MSD, BMS, Pfizer, AbbVie, Novartis, and Janssen.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 363.2-363
Author(s):  
S. Trattnig ◽  
C. Scotti ◽  
D. Laurent ◽  
V. Juras ◽  
S. Hacker ◽  
...  

Background:LNA043 is a modified, recombinant version of the human angiopoietin-like 3 (ANGPTL3) protein acting directly on cartilage-resident cells to transmit its cartilage anabolic effect. A first-in-human study previously demonstrated the favourable safety profile and the modulation of several pathways involved in cartilage homeostasis and osteoarthritis (OA)1. A previous proof-of-mechanism imaging study used high field (7 Tesla) magnetic resonance imaging (MRI) to show formation of hyaline-like tissue after a single injection of 20 mg LNA043 (unpublished data).Objectives:To evaluate non-invasively the chondro-regenerative capacity of multiple intra-articular (i.a.) injections of LNA043 in patients with articular cartilage lesions in the knee (NCT03275064).Methods:This was a randomised, double-blind, placebo (PBO)-controlled, proof-of-concept study in patients with a partial thickness cartilage lesion. In total, 58 patients (43 [20 mg LNA043]; 15 [PBO]), stratified by lesion type (condylar or patellar) were treated with 4 weekly i.a. injections. The primary endpoint was T2 relaxation time measurement as a marker of collagen fiber network, and cartilage lesion-volume was a secondary endpoint, both using 3-Tesla MRI. Assessments were performed at baseline, weeks (wks) 8, 16, 28 and 52 (the latter in 23/58 patients). While lesion-volume for the secondary endpoint was determined from manually segmented images, the cartilage volume of 21 sub-regions spanning the entire knee was also measured from 3D isotropic MR images employing an automated segmentation prototype software (MR Chondral Health 2.1 [MRCH], Siemens Healthcare)2. An exploratory analysis evaluated the treatment effect for the additive volume of the 3 subregions in the weight-bearing area of the medial femur.Results:No change in T2 relaxation time was detected between treatment and PBO groups. Manual segmentation showed continuous filling of the cartilage lesions up to wk 28 in LNA043-treated patients with femoral lesions (p=0.08, vs PBO) while no effect was detected for patients with patellar lesions. Given the limitations of measuring small, irregularly shaped lesions with manual image-analysis, the MRCH approach was used (Figure 1). In the medial femoral weight-bearing region, refilling was detected over time (Δ=123 mm3 at wk 28, N= 37, p= 0.05). No overgrowth was detected in the lateral femoral condyles without cartilage damage. The overall safety profile was favourable; only mild/moderate local reactions were reported, including a higher incidence of joint swelling (9.3% vs 0%) and arthralgia (11.6% vs 6.7%) for LNA043 vs PBO resolving spontaneously or with paracetamol/NSAIDs. No anti-drug antibodies were detected.Conclusion:Treatment with 4 weekly i.a. injections of 20 mg LNA043 resulted in regeneration of damaged cartilage in patients with femoral articular cartilage lesions. Automated measurement of cartilage volume in the femoral index region was able to detect a relevant treatment effect and was found to be more sensitive than the manual segmentation method. No sign of cartilage overgrowth was observed in healthy femoral regions. A Phase 2b study in patients with mild to moderate knee OA is in preparation.References:[1]Scotti et al. ACR Convergence 2020; Abstract #1483[2]Juras et al. Cartilage 2020; Sep 29:1-12Disclosure of Interests:Siegfried Trattnig: None declared, Celeste Scotti Shareholder of: Novartis, Employee of: Novartis, Didier Laurent Shareholder of: Novartis, Employee of: Novartis, Vladimir Juras: None declared, Scott Hacker Grant/research support from: Novartis, Brian Cole: None declared, Libor Pasa: None declared, Roman Lehovec: None declared, Pavol Szomolanyi: None declared, Esther Raithel Employee of: Siemens Healthcare GmbH, Franziska Saxer Shareholder of: Novartis, Employee of: Novartis, Jens Praestgaard Shareholder of: Novartis, Employee of: Novartis, Fabiola La Gamba Shareholder of: Novartis, Employee of: Novartis, José L. Jiménez Employee of: Novartis, David Sanchez Ramos Shareholder of: Novartis, Employee of: Novartis, Ronenn Roubenoff Shareholder of: Novartis, Employee of: Novartis, Matthias Schieker Shareholder of: Novartis, Employee of: Novartis


2008 ◽  
Vol 16 (10) ◽  
pp. 1167-1173 ◽  
Author(s):  
M.E. Bowers ◽  
N. Trinh ◽  
G.A. Tung ◽  
J.J. Crisco ◽  
B.B. Kimia ◽  
...  

1994 ◽  
Vol 12 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Ilkka Kiviranta ◽  
Markku Tammi ◽  
Jukka Jurvelin ◽  
Jari Arokoski ◽  
Anna-Marja Säämänen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document