Classically Activated Macrophages Protect against Lipopolysaccharide-induced Acute Lung Injury by Expressing Amphiregulin in Mice

2016 ◽  
Vol 124 (5) ◽  
pp. 1086-1099 ◽  
Author(s):  
Younian Xu ◽  
Chen Meng ◽  
Guilin Liu ◽  
Dong Yang ◽  
Lisha Fu ◽  
...  

Abstract Background Alveolar macrophages (AMs) activated into M1 phenotype are involved in the development of lipopolysaccharide-induced acute lung injury (ALI). However, whether AMs express amphiregulin and what roles amphiregulin plays in lipopolysaccharide-induced ALI remain poorly understood. Methods Acute lung injury was induced by intratracheal instillation of lipopolysaccharide in male C57BL/6 mice. Lung injury scores, level of protein, and level of neutrophils in bronchial alveolar lavage fluid of lipopolysaccharide-induced ALI mice were compared with those in mice challenged with recombinant exogenous amphiregulin and antiamphiregulin antibody. Amphiregulin expression in macrophages and neutrophils in bronchial alveolar lavage fluid of lipopolysaccharide-induced ALI mice was determined by using immunofluorescence technique and further detected in M0, M1, and M2 phenotypes of both peritoneal macrophages and AMs. The effect of amphiregulin on apoptosis of MLE12 cells and activation of epithelial growth factor receptor-AKT pathway were, respectively, examined by using flow cytometry and western blotting. Results Alveolar macrophages were found to highly express amphiregulin in ALI mice. Amphiregulin neutralization aggravated, whereas recombinant exogenous amphiregulin attenuated lipopolysaccharide-induced ALI in mice (n = 6). In cultured AMs and peritoneal macrophages, amphiregulin was mainly generated by M1, rather than M0 or M2 phenotype (n = 5). Apoptosis ratio of lipopolysaccharide-challenged MLE12 cells was significantly reduced by recombinant exogenous amphiregulin from 16.60 ± 1.82 to 9.47 ± 1.67% (n = 5) but significantly increased from 17.45 ± 1.13 to 21.67 ± 1.10% (n = 5) after stimulation with supernatant of M1-polarized AM media conditioned with amphiregulin-neutrolizing antibody. Western blotting revealed that amphiregulin activated epithelial growth factor receptor and AKT in the lung tissues and MLE12 cells (n = 5). Conclusions Different from the common notion that classically activated AMs have just a detrimental effect on the lung tissues, the results of this study showed that classically activated AMs also exerted a protective effect on the lung tissues by producing high-level amphiregulin in lipopolysaccharide-induced ALI.

2021 ◽  
pp. 2100880
Author(s):  
Masahiro Yamashita ◽  
Miyuki Niisato ◽  
Yasushi Kawasaki ◽  
Sinem Karaman ◽  
Marius R. Robciuc ◽  
...  

RationaleSuccessful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear.ObjectivesWe investigated the ameliorative effects of vascular endothelial growth factor receptor-3 (VEGFR-3)/VEGF-C signaling in macrophages in lipopolysaccharide-induced lung injury.MethodsLipopolysaccharides were intranasally injected into wild-type and transgenic mice. Gain- and loss- of VEGF-C/VEGFR-3 signaling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3, or, anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells.Measurements and Main ResultsThe early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage fluid (BALF) interleukin (IL)-10, but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to the mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3 deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of extrinsic apoptotic neutrophils, and VEGF-C/VEGFR-3 signaling increased efferocytosis via upregulation of integrin alpha v in the macrophages. We also found that incubation with BALF from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreases VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages.ConclusionsVEGFR-3/VEGF-C signaling in macrophages ameliorates experimental lung injury. This mechanism may provide an explanation also for ARDS resolution.


2021 ◽  
Author(s):  
Irina N. Baranova ◽  
Alexander V. Bocharov ◽  
Tatyana G. Vishnyakova ◽  
Zhigang Chen ◽  
Anna A. Birukova ◽  
...  

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake, and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates understanding SR-BI’s role in endotoxemia/sepsis, calling for use of alternative models. In this study, using hSR-BI and hSR-BII transgenic mice, we found that SR-BI and to a lesser extent its splicing variant SR-BII, protects against LPS-induced lung damage. At 20 hours after intratracheal LPS instillation the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice compared to wild type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content as well as lung tissue neutrophil infiltration found in wild type mice was associated with markedly (2-3 times) increased pro-inflammatory cytokine production as compared to transgenic mice following LPS administration. Markedly lower endotoxin levels detected in BALF of transgenic vs. wild type mice along with the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 hours after the IT LPS injection suggest that hSR-BI and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


2000 ◽  
Vol 278 (4) ◽  
pp. L719-L725 ◽  
Author(s):  
Chizuko Tsuji ◽  
Sumie Shioya ◽  
Yuki Hirota ◽  
Naoto Fukuyama ◽  
Daisaku Kurita ◽  
...  

The purposes of this study were 1) to identify the nitric oxide (NO) synthase (NOS) isoform responsible for NO-mediated radiation-induced lung injury, 2) to examine the formation of nitrotyrosine, and 3) to see whether nitrotyrosine formation and lung injury are reduced by an inducible NOS (iNOS) inhibitor, aminoguanidine. The left hemithorax of rats was irradiated (20 Gy), and the degree of lung injury, the expression of NOS isoforms, and the formation of nitrotyrosine and superoxide were examined after 2 wk. iNOS mRNA was induced, and endothelial NOS mRNA was markedly increased in the irradiated lung. Nitrotyrosine was detected biochemically and immunohistochemically. Aminoguanidine prevented acute lung injury as indicated by decreased protein concentration and lactate dehydrogenase activity in bronchoalveolar lavage fluid and improved NMR parameters and histology. Furthermore, the formation of nitrotyrosine was significantly reduced in the aminoguanidine group. We conclude that iNOS induction is a major factor in radiation-induced lung injury and that nitrotyrosine formation may participate in the NO-induced pathogenesis.


2018 ◽  
Vol 219 (9) ◽  
pp. 1377-1388 ◽  
Author(s):  
Chun-Kuang Lin ◽  
Chin-Kai Tseng ◽  
Yu-Hsuan Wu ◽  
Chun-Yu Lin ◽  
Chung-Hao Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document