Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate?

2018 ◽  
Vol 128 (5) ◽  
pp. 873-879 ◽  
Author(s):  
Erik R. Swenson

Abstract Maintenance of intracellular pH is critical for clinical homeostasis. The metabolism of glucose, fatty acids, and amino acids yielding the generation of adenosine triphosphate in the mitochondria is accompanied by the production of acid in the Krebs cycle. Both the nature of this acidosis and the mechanism of its disposal have been argued by two investigators with a long-abiding interest in acid–base physiology. They offer different interpretations and views of the molecular mechanism of this intracellular pH regulation during normal metabolism. Dr. John Severinghaus has posited that hydrogen ion and bicarbonate are the direct end products in the Krebs cycle. In the late 1960s, he showed in brain and brain homogenate experiments that acetazolamide, a carbonic anhydrase inhibitor, reduces intracellular pH. This led him to conclude that hydrogen ion and bicarbonate are the end products, and the role of intracellular carbonic anhydrase is to rapidly generate diffusible carbon dioxide to minimize acidosis. Dr. Erik Swenson posits that carbon dioxide is a direct end product in the Krebs cycle, a more widely accepted view, and that acetazolamide prevents rapid intracellular bicarbonate formation, which can then codiffuse with carbon dioxide to the cell surface and there be reconverted for exit from the cell. Loss of this “facilitated diffusion of carbon dioxide” leads to intracellular acidosis as the still appreciable uncatalyzed rate of carbon dioxide hydration generates more protons. This review summarizes the available evidence and determines that resolution of this question will require more sophisticated measurements of intracellular pH with faster temporal resolution.

1986 ◽  
Vol 122 (1) ◽  
pp. 355-367
Author(s):  
M. Nikinmaa ◽  
T. Kunnamo-Ojala ◽  
E. Railo

Mechanisms regulating the red cell pH in lamprey (Lampetra fluviatilis) were studied using the ammonium chloride prepulse technique. The cells were initially incubated in a physiological saline containing 20 mmol l-1 ammonium chloride, and intracellular pH measured with the DMO technique. Ammonium chloride was then rapidly removed by centrifugation, and the changes in the intracellular pH followed. The intraerythrocytic pH is primarily regulated by an amiloride-sensitive sodium/proton exchange. When sodium is present in the incubation medium, the intracellular pH rapidly recovers from the acidification associated with the removal of ammonium chloride from the incubation. When sodium is removed from the incubation medium, intracellular pH does not recover, and when the cells are treated with 10(−3) mol l-1 amiloride in the presence of sodium, carbon dioxide and bicarbonate, the intracellular pH recovery is drastically reduced. The movements of carbon dioxide, its consecutive catalysed hydration and dissociation to protons and bicarbonate and, possibly, movements of bicarbonate out of the cell acidify the cell contents. This is shown by the observation that the steady-state intracellular pH is higher in a HEPES-buffered medium than in a CO2/HCO3(−)-buffered medium at the same extracellular pH. The acidification is dependent on cellular carbonic anhydrase activity, present in lamprey red cells, which speeds up the hydration reaction. When the action of carbonic anhydrase is inhibited by acetazolamide, removal of ammonium chloride from the incubation medium does not cause intracellular acidification.


1987 ◽  
Vol 252 (1) ◽  
pp. G109-G113
Author(s):  
R. M. Henderson ◽  
J. Graf ◽  
J. L. Boyer

Intracellular pH (pHi) was measured directly in isolated rat hepatocyte couplets using pH sensitive microelectrodes. The hepatocytes were maintained in a minimal salt buffer without added hormones or serum. Values of pHi (6.99 +/- 0.12, mean +/- SE) were close to their Nernst equilibria. After intracellular acidification with ammonium chloride, pH regulation was inhibited with 1 mM amiloride or by omission of external sodium, consistent with a Na-H exchange mechanism. Mean intracellular buffering power, in the nominal absence of carbon dioxide, was 34.1 +/- 11.4 mM. In the presence of external bicarbonate, amiloride or omission of sodium slowed, but did not completely inhibit recovery from acidification, indicating that additional pHi regulation mechanisms may operate in this preparation. These studies provide a direct measurement of pHi in hepatocyte couplets and indicate that Na-H exchange, together with a bicarbonate dependent system are important mechanisms for pHi regulation in this preparation.


1997 ◽  
Vol 93 (6) ◽  
pp. 593-598 ◽  
Author(s):  
D. J. A. Goldsmith ◽  
L. G. Forni ◽  
P. J. Hilton

1. The correction of metabolic acidosis with sodium bicarbonate remains controversial. Experiments in vitro have suggested possible deleterious effects after alkalinization of the extracellular fluid. Disequilibrium of carbon dioxide and bicarbonate across cell membranes after alkali administration, leading to the phenomenon of ‘paradoxical’ intracellular acidosis, has been held responsible for some of these adverse effects. 2. Changes in intracellular pH in suspensions of leucocytes from healthy volunteers were monitored using a fluorescent intracellular dye. The effect in vitro of increasing extracellular pH with sodium bicarbonate was studied at different sodium bicarbonate concentrations. Lactic acid and propionic acid were added to the extracellular buffer to mimic conditions of metabolic acidosis. 3. The addition of a large bolus of sodium bicarbonate caused intracellular acidification as has been observed previously. The extent of the intracellular acidosis was dependent on several factors, being most evident at higher starting intracellular pH. When sodium bicarbonate was added as a series of small boluses the reduction in intracellular pH was small. Under conditions of initial acidosis this was rapidly followed by intracellular alkalinization. 4. Although intracellular acidification occurs after addition of sodium bicarbonate to a suspension of human leucocytes in vitro, the effect is minimal when the conditions approximate those seen in clinical practice. We suggest that the observed small and transient lowering of intracellular pH is insufficient grounds in itself to abandon the use of sodium bicarbonate in human acidosis.


1992 ◽  
Vol 263 (4) ◽  
pp. F716-F721 ◽  
Author(s):  
H. Ekblad ◽  
A. Aperia ◽  
S. H. Larsson

This study examines the ontogeny of cellular pH regulation in renal proximal tubule cells (RPTC). RPTC from 8- to 40-day-old Sprague-Dawley rats (RPTC-8 to RPTC-40) were studied after 48 h of primary culture. Intracellular pH (pHi) was measured by quantitative fluorescence microscopy using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. Recordings were made under basal conditions and after imposing a cytoplasmic alkalosis and acidosis using 15 mM NH4+ salt. The net recovery rate (dpHi/dt) from intracellular acidosis increases significantly between 10 and 12 days of age from 0.39 +/- 0.04 to 0.54 +/- 0.06 pH units/min (P < 0.05, n = 10 vs. 6). This increase can be completely accounted for by an increase in the rate of amiloride (100 microM)-inhibitable Na(+)-H+ exchange (0.29 +/- 0.04 vs. 0.42 +/- 0.05 pH units/min, P < 0.05, n = 6 vs. 6). The rate of Na(+)-H+ exchange increases similarly in RPTC-10 and RPTC-40 when the transmembrane Na+ gradient is increased by Na+ depleting the cells (48 and 49%, respectively). The amiloride-insensitive recovery is Na+ independent and insensitive to 4-acetamido-4'-isothiocyanostilbene-2-2'-disulfonic acid (SITS, 500 microM) (range 0.08-0.14 pH units/min). The net recovery rate from intracellular alkalosis is significantly lower in RPTC-10 than in RPTC-40 (0.16 +/- 0.02 vs. 0.28 +/- 0.02 pH units/min, P < 0.01, n = 4 vs. 5). SITS (500 microM) inhibits the recovery by 27 +/- 8 and 26 +/- 9%, respectively, whereas amiloride has no effect.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 262 (5) ◽  
pp. R909-R914 ◽  
Author(s):  
C. E. Johanson ◽  
Z. Parandoosh ◽  
M. L. Dyas

The carbonic anhydrase inhibitor acetazolamide is useful for analyzing ion transport, pH regulation, and fluid formation in developing central nervous system. We used the 14C-labeled dimethadione technique to measure alterations in steady-state pH, and to estimate the HCO3 concentration [HCO3], in choroid plexus (CP), cerebrospinal fluid (CSF), and cerebral cortex of 1- and 3-wk-old Sprague-Dawley rats treated with acetazolamide or probenecid. These drugs can suppress transport of HCO3 and other anions in some cells, consequently altering intracellular pH. In 1-wk-old infant rats whose CSF secretory process is incompletely developed, 1 h of acetazolamide treatment did not significantly change CP intracellular pH or [HCO3]. However, in 3-wk-old rats, in which the ability of CP to secrete ions and fluids is almost fully developed, acetazolamide caused marked increases in CP cell intracellular pH and [HCO3]. In contrast, acetazolamide-induced alkalinization was not observed in CSF or cerebral cortex of the 1- and 3-wk-old animals. The other test agent, probenecid (an inhibitor of anion transport but not of carbonic anhydrase), did not alter the pH of any region at any age investigated. Overall, the results are interpreted in light of developmental changes in carbonic anhydrase and previous findings from kinetic analyses of ion-translocating systems in CP. Acetazolamide may interfere with a CP apical membrane HCO3 extrusion mechanism not fully operational in infant rats.


1969 ◽  
Vol 114 (4) ◽  
pp. 703-705 ◽  
Author(s):  
John W. Severinghaus ◽  
F. Norman Hamilton ◽  
Shamay Cotev

Sudden oxygenation of a thin film of rat brain homogenate, suspended between the surface of a glass pH-sensitive electrode and a gas-permeable membrane, is accompanied by a fall in pH, which is greater when carbonic anhydrase is inhibited. The result suggests that oxidative decarboxylation yields carbonic acid (HCO3− and H+), which dissociates to form molecular carbon dioxide. Brain carbonic anhydrase facilitates the formation of carbon dioxide from the decarboxylation products.


1993 ◽  
Vol 84 (2) ◽  
pp. 133-139 ◽  
Author(s):  
L. L. Ng ◽  
J. E. Davies ◽  
P. Quinn

1. Using microfluorimetry, intracellular pH, buffering capacity and intracellular pH recovery from intracellular acidosis were determined in isolated adult rat ventricular myocytes, in buffers with and without HCO-3. 2. In nominally HCO-3-free media, the intracellular pH was higher than in HCO-3-containing media. Buffering capacity at resting intracellular pH and at a pH of about 6.3 was also lower in HCO-3-free media. 3. In HCO-3-free media, recovery from an acid load after an NH4C1 prepulse was almost completely inhibited by the Na+/H+ antiport activity specific inhibitor ethylisopropyl amiloride. However, in the presence of HCO-3, H+ efflux rate was enhanced, and ethylisopropyl amiloride led to only partial inhibition of H+ efflux. Complete inhibition was achieved only with further addition of the anion-transport inhibitor 4,4′-di-isothiocyanatostilbene-2,2′-disulphonate. 4. Thus, in adult rat ventricular myocytes, recovery from intracellular acidosis in the absence of HCO-3 was almost wholly due to Na+/H+ antiport activity. In the more physiological situation with HCO-3 present, a third of the recovery from an intracellular acid load was attributed to an additional external Na+-dependent di-isothiocyanatostilbene-disulphonate-sensitive H+ efflux.


1992 ◽  
Vol 82 (5) ◽  
pp. 559-564 ◽  
Author(s):  
Campbell H. Thompson ◽  
Paul D. Syme ◽  
E. Mark Williams ◽  
John G. G. Ledingham ◽  
George K. Radda

1. The effect of bicarbonate administration on the intracellular pH of rat skeletal muscle was examined by using 31P n.m.r. 2. Bicarbonate administered intraperitoneally caused a significant intracellular acidosis in rat skeletal muscle in vivo. When the bicarbonate was administered intravenously there was no such change in the pH of the skeletal muscle. 3. Bicarbonate administration by either route resulted in an elevated mixed venous partial pressure of carbon dioxide and an elevated arterial pH, but no significant change in the arterial partial pressure of carbon dioxide. The increase in arterial bicarbonate concentration after intraperitoneal injection of bicarbonate was delayed when compared with that after intravenous injection. 4. The administration of hypertonic solutions intravenously caused a transient 40–50% fall in blood pressure, which had resolved within 1 min. 5. The data suggest that the effect of bicarbonate administration on intracellular pH in vivo is related not only to carbon dioxide loading of the cell but also to the rate of change in the extracellular bicarbonate concentration.


Diabetes ◽  
1995 ◽  
Vol 44 (2) ◽  
pp. 196-202 ◽  
Author(s):  
N. Khandoudi ◽  
M. Bernard ◽  
P. Cozzone ◽  
D. Feuvray

1995 ◽  
Vol 269 (1) ◽  
pp. C226-C233 ◽  
Author(s):  
V. Casavola ◽  
R. J. Turner ◽  
C. Guay-Broder ◽  
K. A. Jacobson ◽  
O. Eidelman ◽  
...  

The selective A1-adenosine-receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX), has been reported to activate Cl- efflux from cystic fibrosis cells, such as pancreatic CFPAC-1 and lung IB3 cells bearing the cystic fibrosis transmembrane regulator(delta F508) mutation, but has little effect on the same process in cells repaired by transfection with wild-type cystic fibrosis transmembrane regulator (O. Eidelman, C. Guay-Broder, P. J. M. van Galen, K. A. Jacobson, C. Fox, R. J. Turner, Z. I. Cabantchik, and H. B. Pollard. Proc. Natl. Acad. Sci. USA 89: 5562-5566, 1992). We report here that CPX downregulates Na+/H+ exchange activity in CFPAC-1 cells but has a much smaller effect on cells repaired with the wild-type gene. CPX also mildly decreases resting intracellular pH. In CFPAC-1 cells, this downregulation is dependent on the presence of adenosine, since pretreatment of the cells with adenosine deaminase blocks the CPX effect. We also show that, by contrast, CPX action on these cells does not lead to alterations in intracellular free Ca2+ concentration. We conclude that CPX affects pH regulation in CFPAC-1 cells, probably by antagonizing the tonic action of endogenous adenosine.


Sign in / Sign up

Export Citation Format

Share Document