scholarly journals γ-Aminobutyric Acid Type A Receptor Potentiation Inhibits Learning in a Computational Network Model

2018 ◽  
Vol 129 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Kingsley P. Storer ◽  
George N. Reeke

Abstract Background Propofol produces memory impairment at concentrations well below those abolishing consciousness. Episodic memory, mediated by the hippocampus, is most sensitive. Two potentially overlapping scenarios may explain how γ-aminobutyric acid receptor type A (GABAA) potentiation by propofol disrupts episodic memory—the first mediated by shifting the balance from excitation to inhibition while the second involves disruption of rhythmic oscillations. We use a hippocampal network model to explore these scenarios. The basis for these experiments is the proposal that the brain represents memories as groups of anatomically dispersed strongly connected neurons. Methods A neuronal network with connections modified by synaptic plasticity was exposed to patterned stimuli, after which spiking output demonstrated evidence of stimulus-related neuronal group development analogous to memory formation. The effect of GABAA potentiation on this memory model was studied in 100 unique networks. Results GABAA potentiation consistent with moderate propofol effects reduced neuronal group size formed in response to a patterned stimulus by around 70%. Concurrently, accuracy of a Bayesian classifier in identifying learned patterns in the network output was reduced. Greater potentiation led to near total failure of group formation. Theta rhythm variations had no effect on group size or classifier accuracy. Conclusions Memory formation is widely thought to depend on changes in neuronal connection strengths during learning that enable neuronal groups to respond with greater facility to familiar stimuli. This experiment suggests the ability to form such groups is sensitive to alteration in the balance between excitation and inhibition such as that resulting from administration of a γ-aminobutyric acid–mediated anesthetic agent.

2008 ◽  
Vol 109 (5) ◽  
pp. 775-781 ◽  
Author(s):  
Yu Ren ◽  
Fu-Jun Zhang ◽  
Qing-Sheng Xue ◽  
Xin Zhao ◽  
Bu-Wei Yu

Background It has been reported that bilateral lesions of the basolateral amygdala complex (BLA) blocked propofol-induced amnesia of inhibitory avoidance (IA) training. Based on these results, the authors hypothesized that the amnesia effect of propofol was partly due to its impairment of memory formation in the hippocampus through activating the BLA gamma-aminobutyric acid type A receptor function. The authors determined the changes in activity-regulated cytoskeleton-associated protein (Arc) expression to be an indicator of IA memory formation. Methods Male Sprague-Dawley rats received bilateral injection of bicuculline methiodide (10, 50, or 100 pmol/0.5 microl) or saline (0.5 microl) into the BLA. Fifteen minutes later, the rats were intraperitoneally injected with either propofol (25 mg/kg) or saline. After 5 min, the one-trial IA training was conducted. Rats intraperitoneally infused with saline served as controls and only received saline injections into the BLA. Twenty-four hours later, the IA retention latency was tested. Separate groups of rats treated the same way were killed either 30 min after IA training for hippocampal Arc mRNA measurement or after 45 min for protein level quantification. Results The largest dose of bicuculline methiodide (100 pmol) not only blocked the propofol-induced amnesia but also reversed the inhibition effect of propofol on Arc protein expression in the hippocampus (P < 0.05). However, the mRNA level of Arc showed no significant changes after propofol and bicuculline methiodide administration. Conclusions The amnesic effect of propofol seems to involve the modulation of Arc protein expression in the hippocampus, occurring through a network interaction with the BLA.


2012 ◽  
Vol 117 (4) ◽  
pp. 780-790 ◽  
Author(s):  
Kingsley P. Storer ◽  
George N. Reeke

Background The understanding of how general anesthetics act on individual cells and on global brain function has increased significantly during the last decade. What remains poorly understood is how anesthetics act at intermediate scales. Several major theories emphasize the importance of neuronal groups, sets of strongly connected neurons that fire in a time-locked fashion, in all aspects of brain function, particularly as a necessary substrate of consciousness. The authors have undertaken computer modeling to determine how ã-aminobutyric acid receptor type A (GABAA) receptor potentiating agents such as propofol may influence the dynamics of neuronal group formation and ongoing activity. Methods A computer model of a cortical network with connections modified by synaptic plasticity was examined. At baseline, the model spontaneously formed neuronal groups. Direct effects of GABAA receptor potentiation and indirect effects on input drive were then examined to study their effects on this process. Results Potentiation of GABAA inhibition and input drive reduction reduced the firing frequency of inhibitory and excitatory neurons in a dose-dependent manner. The diminution in spiking rates led to dramatic reductions in the firing frequency of neuronal groups. Simulated electroencephalographic output from the model at baseline exhibits gamma and theta rhythmicity. The direct and indirect GABAA effects reduce the amplitude of these underlying rhythms and modestly slow the gamma rhythm. Conclusions GABAA facilitation both directly and indirectly inhibits the ability of neurons to form groups spontaneously. A lack of group formation is consistent with some theories of anesthetic-induced loss of memory formation and consciousness.


2017 ◽  
Author(s):  
Andrea Greve ◽  
Elisa Cooper ◽  
Roni Tibon ◽  
Richard Henson

Events that conform to our expectations, i.e, are congruent with our world knowledge or schemas, are better remembered than unrelated events. Yet events that conflict with schemas can also be remembered better. We examined this apparent paradox in four experiments, in which schemas were established by training ordinal relationships between randomly-paired objects, while episodic memory was tested for the number of objects on each trial. Better memory was found for both congruent and incongruent trials, relative to unrelated trials, producing memory performance that was a “U-shaped” function of congruency. Furthermore, the incongruency advantage, but not congruency advantage, emerged even if the information probed by the memory test was irrelevant to the schema, while the congruency advantage, but not incongruency advantage, also emerged after initial encoding. Schemas therefore augment episodic memory in multiple ways, depending on the match between novel and existing information.


Sign in / Sign up

Export Citation Format

Share Document