scholarly journals Intraoperative CT and Surgical Navigation for Iliosacral Screws

2018 ◽  
Vol 32 ◽  
pp. S24-S25 ◽  
Author(s):  
Jannat M. Khan ◽  
Daniel L. Lara ◽  
Alejandro Marquez-Lara ◽  
Samuel Rosas ◽  
Eddy Hasty ◽  
...  
2020 ◽  
Vol 99 (5) ◽  
pp. 212-218

Introduction: The authors analyzed a series of ankylosing spondylitis patients with cervical spine fracture undergoing posterior stabilization using spinal navigation based on intraoperative CT imaging. The purpose of this study was to evaluate the accuracy and safety of navigated posterior stabilization and to analyze the adequacy of this method for treatment of fractures in ankylosed cervical spine. Methods: Prospectively collected clinical data, together with radiological documentation of a series of 8 consecutive patients with 9 cervical spine fracture were included in the analysis. The evaluation of screw insertion accuracy based on postoperative CT imaging, description of instrumentation- related complications and evaluation of morphological and clinical results were the subjects of interest. Results: Of the 66 implants inserted in all cervical levels and in upper thoracic spine, only 3 screws (4.5%) did not meet the criteria of anatomically correct insertion. Neither screw malposition nor any other intraoperative events were complicated by any neural, vascular or visceral injury. Thus we did not find a reason to change implant position intraoperatively or during the postoperative period. The quality of intraoperative CT imaging in our group of patients was sufficient for reliable trajectory planning and implant insertion in all segments, irrespective of the habitus, positioning method and comorbidities. In addition to stabilization of the fracture, the posterior approach also allows reducing preoperative kyphotic position of the cervical spine. In all patients, we achieved a stable situation with complete bone fusion of the anterior part of the spinal column and lateral masses at one year follow-up. Conclusion: Spinal navigation based on intraoperative CT imaging has proven to be a reliable and safe method of stabilizing cervical spine with ankylosing spondylitis. The strategy of posterior stabilization seems to be a suitable method providing high primary stability and the conditions for a subsequent high fusion rate.


2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 


Author(s):  
Mohammad Ashraf ◽  
Usman Ahmad Kamboh ◽  
Naveed Ashraf

AbstractCraniovertebral junction surgery is associated with unique difficulties. Type 2 odontoid fractures (Anderson and D Alonzo) have a great potential for nonunion and malunion. These fracture patients may require a circumferential decompression and fixation. The addition of intraoperative CT with neuronavigation greatly aids in craniovertebral junction surgery. We operated on a 59-year-old-male with a type 2 fracture with posterior subluxation of C1 anterior arch and a cranially displaced odontoid peg. First, a transoral odontoidectomy was performed followed by a craniocervical fixation. Occipital plates and C3–C4 lateral mass screws were used as C1 was discovered to be occipitalized intraoperatively and atlantoaxial facet joints could not be reduced as discovered by intraoperative CT resconstruction. Intraoperative CT scan was crucial to this circumferential decompression and fixation, allowed us to resect the odontoid peg safely and completely and to confirm adequate screw trajectory making this complex surgery easier for us and safer for the patient. The patient was discharged 4 months after admission with stable neurology. Intraoperative CT was fundamental to correct decision making.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jianbiao Xu ◽  
Leiming Zhang ◽  
Rongqiang Bu ◽  
Yankang Liu ◽  
Kai-Uwe Lewandrowski ◽  
...  

Abstract Background Spondylodiscitis is an unusual infectious disease, which usually originates as a pathogenic infection of intervertebral discs and then spreads to neighboring vertebral bodies. The objective of this study is to evaluate percutaneous debridement and drainage using intraoperative CT-Guide in multilevel spondylodiscitis. Methods From January 2002 to May 2017, 23 patients with multilevel spondylodiscitis were treated with minimally invasive debridement and drainage procedures in our department. The clinical manifestations, evolution, and minimally invasive debridement and drainage treatment of this refractory vertebral infection were investigated. Results Of the enrolled patients, the operation time ranged from 30 minutes to 124 minutes every level with an average of 48 minutes. Intraoperative hemorrhage was minimal. The postoperative follow-up period ranged from 12 months to 6.5 years with an average of 3.7 years. There was no reactivation of infection in the treated vertebral segment during follow-up, but two patients with fungal spinal infection continued to progress by affecting adjacent segments prior to final resolution. According to the classification system of Macnab, one patient had a good outcome at the final follow-up, and the rest were excellent. Conclusions Minimally invasive percutaneous debridement and irrigation using intraoperative CT-Guide is an effective minimally invasive method for the treatment of multilevel spondylodiscitis.


Sign in / Sign up

Export Citation Format

Share Document