What are the optimal targeting visualizations for performing surgical navigation of iliosacral screws? A user study

Author(s):  
Prashant U. Pandey ◽  
Pierre Guy ◽  
Kelly A. Lefaivre ◽  
Antony J. Hodgson
2018 ◽  
Vol 32 ◽  
pp. S24-S25 ◽  
Author(s):  
Jannat M. Khan ◽  
Daniel L. Lara ◽  
Alejandro Marquez-Lara ◽  
Samuel Rosas ◽  
Eddy Hasty ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Leah Groves ◽  
Natalie Li ◽  
Terry M. Peters ◽  
Elvis C. S. Chen

While ultrasound (US) guidance has been used during central venous catheterization to reduce complications, including the puncturing of arteries, the rate of such problems remains non-negligible. To further reduce complication rates, mixed-reality systems have been proposed as part of the user interface for such procedures. We demonstrate the use of a surgical navigation system that renders a calibrated US image, and the needle and its trajectory, in a common frame of reference. We compare the effectiveness of this system, whereby images are rendered on a planar monitor and within a head-mounted display (HMD), to the standard-of-care US-only approach, via a phantom-based user study that recruited 31 expert clinicians and 20 medical students. These users performed needle-insertions into a phantom under the three modes of visualization. The success rates were significantly improved under HMD-guidance as compared to US-guidance, for both expert clinicians (94% vs. 70%) and medical students (70% vs. 25%). Users more consistently positioned their needle closer to the center of the vessel’s lumen under HMD-guidance compared to US-guidance. The performance of the clinicians when interacting with this monitor system was comparable to using US-only guidance, with no significant difference being observed across any metrics. The results suggest that the use of an HMD to align the clinician’s visual and motor fields promotes successful needle guidance, highlighting the importance of continued HMD-guidance research.


2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 


2008 ◽  
Vol 66 (5) ◽  
pp. 318-332 ◽  
Author(s):  
Jaka Sodnik ◽  
Christina Dicke ◽  
Sašo Tomažič ◽  
Mark Billinghurst
Keyword(s):  

2021 ◽  
Author(s):  
Marius Fechter ◽  
Benjamin Schleich ◽  
Sandro Wartzack

AbstractVirtual and augmented reality allows the utilization of natural user interfaces, such as realistic finger interaction, even for purposes that were previously dominated by the WIMP paradigm. This new form of interaction is particularly suitable for applications involving manipulation tasks in 3D space, such as CAD assembly modeling. The objective of this paper is to evaluate the suitability of natural interaction for CAD assembly modeling in virtual reality. An advantage of the natural interaction compared to the conventional operation by computer mouse would indicate development potential for user interfaces of current CAD applications. Our approach bases on two main elements. Firstly, a novel natural user interface for realistic finger interaction enables the user to interact with virtual objects similar to physical ones. Secondly, an algorithm automatically detects constraints between CAD components based solely on their geometry and spatial location. In order to prove the usability of the natural CAD assembly modeling approach in comparison with the assembly procedure in current WIMP operated CAD software, we present a comparative user study. Results show that the VR method including natural finger interaction significantly outperforms the desktop-based CAD application in terms of efficiency and ease of use.


Author(s):  
Robin Horst ◽  
Ramtin Naraghi-Taghi-Off ◽  
Linda Rau ◽  
Ralf Dörner

AbstractEvery Virtual Reality (VR) experience has to end at some point. While there already exist concepts to design transitions for users to enter a virtual world, their return from the physical world should be considered, as well, as it is a part of the overall VR experience. We call the latter outro-transitions. In contrast to offboarding of VR experiences, that takes place after taking off VR hardware (e.g., HMDs), outro-transitions are still part of the immersive experience. Such transitions occur more frequently when VR is experienced periodically and for only short times. One example where transition techniques are necessary is in an auditorium where the audience has individual VR headsets available, for example, in a presentation using PowerPoint slides together with brief VR experiences sprinkled between the slides. The audience must put on and take off HMDs frequently every time they switch from common presentation media to VR and back. In a such a one-to-many VR scenario, it is challenging for presenters to explore the process of multiple people coming back from the virtual to the physical world at once. Direct communication may be constrained while VR users are wearing an HMD. Presenters need a tool to indicate them to stop the VR session and switch back to the slide presentation. Virtual visual cues can help presenters or other external entities (e.g., automated/scripted events) to request VR users to end a VR session. Such transitions become part of the overall experience of the audience and thus must be considered. This paper explores visual cues as outro-transitions from a virtual world back to the physical world and their utility to enable presenters to request VR users to end a VR session. We propose and investigate eight transition techniques. We focus on their usage in short consecutive VR experiences and include both established and novel techniques. The transition techniques are evaluated within a user study to draw conclusions on the effects of outro-transitions on the overall experience and presence of participants. We also take into account how long an outro-transition may take and how comfortable our participants perceived the proposed techniques. The study points out that they preferred non-interactive outro-transitions over interactive ones, except for a transition that allowed VR users to communicate with presenters. Furthermore, we explore the presenter-VR user relation within a presentation scenario that uses short VR experiences. The study indicates involving presenters that can stop a VR session was not only negligible but preferred by our participants.


2021 ◽  
Vol 11 (13) ◽  
pp. 6047
Author(s):  
Soheil Rezaee ◽  
Abolghasem Sadeghi-Niaraki ◽  
Maryam Shakeri ◽  
Soo-Mi Choi

A lack of required data resources is one of the challenges of accepting the Augmented Reality (AR) to provide the right services to the users, whereas the amount of spatial information produced by people is increasing daily. This research aims to design a personalized AR that is based on a tourist system that retrieves the big data according to the users’ demographic contexts in order to enrich the AR data source in tourism. This research is conducted in two main steps. First, the type of the tourist attraction where the users interest is predicted according to the user demographic contexts, which include age, gender, and education level, by using a machine learning method. Second, the correct data for the user are extracted from the big data by considering time, distance, popularity, and the neighborhood of the tourist places, by using the VIKOR and SWAR decision making methods. By about 6%, the results show better performance of the decision tree by predicting the type of tourist attraction, when compared to the SVM method. In addition, the results of the user study of the system show the overall satisfaction of the participants in terms of the ease-of-use, which is about 55%, and in terms of the systems usefulness, about 56%.


Sign in / Sign up

Export Citation Format

Share Document