Development and Evaluation of an Automated Machine Learning Algorithm for In-Hospital Mortality Risk Adjustment Among Critical Care Patients*

2018 ◽  
Vol 46 (6) ◽  
pp. e481-e488 ◽  
Author(s):  
Ryan J. Delahanty ◽  
David Kaufman ◽  
Spencer S. Jones
2020 ◽  
Vol 27 (1) ◽  
pp. e100109 ◽  
Author(s):  
Hoyt Burdick ◽  
Eduardo Pino ◽  
Denise Gabel-Comeau ◽  
Andrea McCoy ◽  
Carol Gu ◽  
...  

BackgroundSevere sepsis and septic shock are among the leading causes of death in the USA. While early prediction of severe sepsis can reduce adverse patient outcomes, sepsis remains one of the most expensive conditions to diagnose and treat.ObjectiveThe purpose of this study was to evaluate the effect of a machine learning algorithm for severe sepsis prediction on in-hospital mortality, hospital length of stay and 30-day readmission.DesignProspective clinical outcomes evaluation.SettingEvaluation was performed on a multiyear, multicentre clinical data set of real-world data containing 75 147 patient encounters from nine hospitals across the continental USA, ranging from community hospitals to large academic medical centres.ParticipantsAnalyses were performed for 17 758 adult patients who met two or more systemic inflammatory response syndrome criteria at any point during their stay (‘sepsis-related’ patients).InterventionsMachine learning algorithm for severe sepsis prediction.Outcome measuresIn-hospital mortality, length of stay and 30-day readmission rates.ResultsHospitals saw an average 39.5% reduction of in-hospital mortality, a 32.3% reduction in hospital length of stay and a 22.7% reduction in 30-day readmission rate for sepsis-related patient stays when using the machine learning algorithm in clinical outcomes analysis.ConclusionsReductions of in-hospital mortality, hospital length of stay and 30-day readmissions were observed in real-world clinical use of the machine learning-based algorithm. The predictive algorithm may be successfully used to improve sepsis-related outcomes in live clinical settings.Trial registration numberNCT03960203


2020 ◽  
Vol 109 (6) ◽  
pp. 1811-1819 ◽  
Author(s):  
Arman Kilic ◽  
Anshul Goyal ◽  
James K. Miller ◽  
Eva Gjekmarkaj ◽  
Weng Lam Tam ◽  
...  

2018 ◽  
Author(s):  
Hoyt Burdick ◽  
Eduardo Pino ◽  
Denise Gabel-Comeau ◽  
Andrea McCoy ◽  
Carol Gu ◽  
...  

AbstractObjectiveTo validate performance of a machine learning algorithm for severe sepsis determination up to 48 hours before onset, and to evaluate the effect of the algorithm on in-hospital mortality, hospital length of stay, and 30-day readmission.SettingThis cohort study includes a combined retrospective analysis and clinical outcomes evaluation: a dataset containing 510,497 patient encounters from 461 United States health centers for retrospective analysis, and a multiyear, multicenter clinical data set of real-world data containing 75,147 patient encounters from nine hospitals for clinical outcomes evaluation.ParticipantsFor retrospective analysis, 270,438 adult patients with at least one documented measurement of five out of six vital sign measurements were included. For clinical outcomes analysis, 17,758 adult patients who met two or more Systemic Inflammatory Response Syndrome (SIRS) criteria at any point during their stay were included.ResultsAt severe sepsis onset, the MLA demonstrated an AUROC of 0.91 (95% CI 0.90, 0.92), which exceeded those of MEWS (0.71, P<001), SOFA (0.74; P<.001), and SIRS (0.62; P<.001). For severe sepsis prediction 48 hours in advance of onset, the MLA achieved an AUROC of 0.77 (95% CI 0.73, 0.80). For the clinical outcomes study, when using the MLA, hospitals saw an average 39.5% reduction of in-hospital mortality, a 32.3% reduction in hospital length of stay, and a 22.7% reduction in 30-day readmission rate.ConclusionsThe MLA accurately predicts severe sepsis onset up to 48 hours in advance using only readily available vital signs in retrospective validation. Reductions of in-hospital mortality, hospital length of stay, and 30-day readmissions were observed in real-world clinical use of the MLA. Results suggest this system may improve severe sepsis detection and patient outcomes over the use of rules-based sepsis detection systems.KEY POINTSQuestionIs a machine learning algorithm capable of accurate severe sepsis prediction, and does its clinical implementation improve patient mortality rates, hospital length of stay, and 30-day readmission rates?FindingsIn a retrospective analysis that included datasets containing a total of 585,644 patient encounters from 461 hospitals, the machine learning algorithm demonstrated an AUROC of 0.93 at time of severe sepsis onset, which exceeded those of MEWS (0.71), SOFA (0.74), and SIRS (0.62); and an AUROC of 0.77 for severe sepsis prediction 48 hours in advance of onset. In an analysis of real-world data from nine hospitals across 75,147 patient encounters, use of the machine learning algorithm was associated with a 39.5% reduction in in-hospital mortality, a 32.3% reduction in hospital length of stay, and a 22.7% reduction in 30-day readmission rate.MeaningThe accurate and predictive nature of this algorithm may encourage early recognition of patients trending toward severe sepsis, and therefore improve sepsis related outcomes.STRENGTHS AND LIMITATIONS OF THIS STUDYA retrospective study of machine learning severe sepsis prediction from a dataset with 510,497 patient encounters demonstrates high accuracy up to 48 hours prior to onset.A multicenter clinical study of real-world data using this machine learning algorithm for severe sepsis alerts achieved reductions of in-hospital mortality, length of stay, and 30-day readmissions.The required presence of an ICD-9 code to classify a patient as severely septic in our retrospective analysis potentially limits our ability to accurately classify all patients.Only adults in US hospitals were included in this study.For the real-world section of the study, we cannot eliminate the possibility that implementation of a sepsis algorithm raised general awareness of sepsis within a hospital, which may lead to higher recognition of septic patients, independent of algorithm performance.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Amie J. Barda ◽  
Christopher M. Horvat ◽  
Harry Hochheiser

Abstract Background There is an increasing interest in clinical prediction tools that can achieve high prediction accuracy and provide explanations of the factors leading to increased risk of adverse outcomes. However, approaches to explaining complex machine learning (ML) models are rarely informed by end-user needs and user evaluations of model interpretability are lacking in the healthcare domain. We used extended revisions of previously-published theoretical frameworks to propose a framework for the design of user-centered displays of explanations. This new framework served as the basis for qualitative inquiries and design review sessions with critical care nurses and physicians that informed the design of a user-centered explanation display for an ML-based prediction tool. Methods We used our framework to propose explanation displays for predictions from a pediatric intensive care unit (PICU) in-hospital mortality risk model. Proposed displays were based on a model-agnostic, instance-level explanation approach based on feature influence, as determined by Shapley values. Focus group sessions solicited critical care provider feedback on the proposed displays, which were then revised accordingly. Results The proposed displays were perceived as useful tools in assessing model predictions. However, specific explanation goals and information needs varied by clinical role and level of predictive modeling knowledge. Providers preferred explanation displays that required less information processing effort and could support the information needs of a variety of users. Providing supporting information to assist in interpretation was seen as critical for fostering provider understanding and acceptance of the predictions and explanations. The user-centered explanation display for the PICU in-hospital mortality risk model incorporated elements from the initial displays along with enhancements suggested by providers. Conclusions We proposed a framework for the design of user-centered displays of explanations for ML models. We used the proposed framework to motivate the design of a user-centered display of an explanation for predictions from a PICU in-hospital mortality risk model. Positive feedback from focus group participants provides preliminary support for the use of model-agnostic, instance-level explanations of feature influence as an approach to understand ML model predictions in healthcare and advances the discussion on how to effectively communicate ML model information to healthcare providers.


Sign in / Sign up

Export Citation Format

Share Document