Resizable Ventricular Patch Plasty in the Porcine Left Ventricle a Pilot Study

Author(s):  
Willemijn H. F. Huijgen ◽  
Paul F. Gründeman ◽  
Tycho van der Spoel ◽  
Maarten-Jan Cramer ◽  
Paul Steendijk ◽  
...  

Objective Endoventricular circular patch plasty is a method used to reconstruct the ventricular cavity in patients with (post) ischemic left ventricular aneurysm or global dilatation. However, late redilatation with mitral regurgitation has been reported, in which postoperative apex shape seems to play an important role. We studied the feasibility of ventricular volume downsizing with a variably shaped patch in porcine hearts. Methods In five in vitro and two acute animal experiments, a dyskinetic aneurysm was simulated with a pericardial insert. Reducing patch surface by changing patch shape diminished end-diastolic volume. In vitro, static end-diastolic volume was determined for each patch shape using volumetry and echocardiography. In the acute animal experiments, preliminary observations of patch behavior in live material were made, and pressure/time relationship, dPdTmax, was registered. Results In vitro, bringing the convex patch into a flat plane reduced LV volume from 66 ± 7 mL (aneurysm) to 49 ± 5 mL. Four of 5 patch shapes further reduced volume to a mean of 38 ± 7 mL (P = 0.03). The in vitro echocardiographic measurements correlated with volumetry findings (r = 0.81). In the acute animal experiments, dPdTmax varied with patch shape, independent of volume changes. Conclusions In this pilot study, in vitro shape configuration of the resizable ventricular patch resulted in a calibrated end-diastolic volume reduction. The data of the two in vivo pilot experiments clearly indicate that change in patch configuration in the situation of more or less unchanged end-diastolic volume had impact on cardiac performance. Future studies must substantiate the results of this observation.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Taejeong Song ◽  
Rohit Singh ◽  
Darshini Desai ◽  
Sheryl E Koch ◽  
Jack Rubinstein ◽  
...  

Rationale: Cardiac m yosin binding protein-C regulates a ctomyosin interaction in striated muscle, but mutations in the MYBPC3 gene can lead to hypertrophic cardiomyopathy (HCM) as seen in some South Asians living in the USA carrying a novel variant wherein an aspartic acid is mutated to a valine at position 389 (D389V). Individuals and iPSC-derived cardiomyocytes carrying D389V display hypercontractility, indicating early onset of HCM. However, the mechanisms underlying the pathophysiology of this mutant in the context of HCM are unknown. Objective: To define the pathophysiological consequences D389V on myosin and cardiac function in vivo . Methods and Results: Compared with wild-type controls, our D389V knock-in homozygous mouse model showed decreased cardiac function by percentage of ejection fraction (-23%, P<0.01), but increased systolic left ventricular volume (+39%, P<0.01) at 3 and 6 months of age. Heart weight to tibia length ratio was significantly increased (+ 15%, P=0.05), demonstrating distinct pathogenicity. Using recombinant proteins carrying D389V substitution at the N-terminal MYBPC3 domains (rC0C2 D389V ), cosedimentation and solid-phase binding assays showed significantly reduced binding rate of rC0C2 D389V to the myosin S2 region (-55% and -23%, P<0.05, respectively), but in vitro actin motility over myosin increased 24% (P<0.05) compared to rC0C2 WT control, indicating a causal relationship between variant and decreased MYBPC3 binding to myosin. Human iPSC-derived D389V het cardiomyocytes display an increase in lipid peroxide and reactive oxygen species by +3- and +7-fold P<0.01, respectively, compared to noncarrier controls. Conclusion: D389V decreases interaction between MYBPC3 and myosin S2, causing reduced cardiac function and providing mechanistic evidence that it contributes to the etiology of HCM.


2008 ◽  
Vol 295 (4) ◽  
pp. H1394-H1402 ◽  
Author(s):  
Juozas A. Zavadzkas ◽  
Rebecca A. Plyler ◽  
Shenikqua Bouges ◽  
Christine N. Koval ◽  
William T. Rivers ◽  
...  

The matrix metalloproteinases (MMPs) play a pivotal role in adverse left ventricular (LV) myocardial remodeling. The transmembrane protein extracellular MMP inducer (EMMPRIN) causes increased MMP expression in vitro, and elevated levels occur in patients with LV failure. However, the direct consequences of a prolonged increase in the myocardial expression of EMMPRIN in vivo remained unexplored. Cardiac-restricted EMMPRIN expression (EMMPRINexp) was constructed in mice using the full-length human EMMPRIN gene ligated to the myosin heavy chain promoter, which yielded approximately a twofold increase in EMMPRIN compared with that of the age/strain-matched wild-type (WT) mice; EMMPRINexp ( n = 27) and WT ( n = 33) mice were examined at 3.2 ± 0.1 or at 13.3 ± 0.5 mo of age ( n = 43 and 26, respectively). LV end-diastolic volume (EDV) was similar in young EMMPRINexp and WT mice (54 ± 2 vs. 57 ± 3 μl), but LV ejection fraction (EF) was reduced (51 ± 1 vs. 57 ± 1%; P < 0.05). In old EMMPRINexp mice, LV EDV was increased compared with WT mice values (76 ± 3 vs. 58 ± 3 μl; P < 0.05) and LV EF was significantly reduced (45 ± 1 vs. 57 ± 2%; P < 0.05). In EMMPRINexp old mice, myocardial MMP-2 and membrane type-1 MMP levels were increased by >50% from WT values ( P < 0.05) and were accompanied by a twofold higher collagen content ( P < 0.05). Persistent myocardial EMMPRINexp in aging mice caused increased levels of both soluble and membrane type MMPs, fibrosis, and was associated with adverse LV remodeling. These findings suggest that EMMPRIN is an upstream signaling pathway that can play a mechanistic role in adverse remodeling within the myocardium.


2012 ◽  
Vol 10 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Sukhraaj Basati ◽  
Bhargav Desai ◽  
Ali Alaraj ◽  
Fady Charbel ◽  
Andreas Linninger

Object Experimental data about the evolution of intracranial volume and pressure in cases of hydrocephalus are limited due to the lack of available monitoring techniques. In this study, the authors validate intracranial CSF volume measurements within the lateral ventricle, while simultaneously using impedance sensors and pressure transducers in hydrocephalic animals. Methods A volume sensor was fabricated and connected to a catheter that was used as a shunt to withdraw CSF. In vitro bench-top calibration experiments were created to provide data for the animal experiments and to validate the sensors. To validate the measurement technique in a physiological system, hydrocephalus was induced in weanling rats by kaolin injection into the cisterna magna. At 28 days after induction, the sensor was implanted into the lateral ventricles. After sealing the skull using dental cement, an acute CSF drainage/infusion protocol consisting of 4 sequential phases was performed with a pump. Implant location was confirmed via radiography using intraventricular iohexol contrast administration. Results Controlled CSF shunting in vivo with hydrocephalic rats resulted in precise and accurate sensor measurements (r = 0.98). Shunting resulted in a 17.3% maximum measurement error between measured volume and actual volume as assessed by a Bland-Altman plot. A secondary outcome confirmed that both ventricular volume and intracranial pressure decreased during CSF shunting and increased during infusion. Ventricular enlargement consistent with successful hydrocephalus induction was confirmed using imaging, as well as postmortem. These results indicate that volume monitoring is feasible for clinical cases of hydrocephalus. Conclusions This work marks a departure from traditional shunting systems currently used to treat hydrocephalus. The overall clinical application is to provide alternative monitoring and treatment options for patients. Future work includes development and testing of a chronic (long-term) volume monitoring system.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Hui Qu ◽  
Bao-dong Xie ◽  
Jian Wu ◽  
Bo Lv ◽  
Jun-bo Chuai ◽  
...  

Background. Engineered heart tissues (EHTs) present a promising alternative to current materials for surgical ventricular restoration (SVR); however, the clinical application remains limited by inadequate vascularization postimplantation. Moreover, a suitable and economic animal model for primary screening is another important issue. Methods. Recently, we used 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride chemistry (EDC) to initiate a strengthened, cytokine-conjugated collagenous platform with a controlled degradation speed. In vitro, the biomaterial exhibited an enhanced mechanical strength maintaining a porous ultrastructure, and the constant release of cytokines promoted the proliferation of seeded human mesenchymal stem cells (hMSCs). In vivo, with the hMSC-seeded, cytokine-immobilized patch (MSCs + GF patch), we performed modified SVR for rats with left ventricular aneurysm postmyocardial infarction (MI). Overall, the rats that underwent modified SVR lost less blood and had lower mortality. After 4 weeks, the rats repaired with this cell-seeded, cytokine-immobilized patch presented preserved cardiac function, beneficial morphology, enhanced cell infiltration, and functional vessel formation compared with the cytokine-free (MSC patch), cell-free (GF patch), or blank controls (EDC patch). Furthermore, the degradable period of the collagen patch in vivo extended up to 3 months after EDC treatment. Conclusions. EDC may substantially modify collagen scaffold and provide a promising and practical biomaterial for SVR.


1995 ◽  
Vol 269 (6) ◽  
pp. H2065-H2073 ◽  
Author(s):  
L. J. Dell'Italia ◽  
Q. C. Meng ◽  
E. Balcells ◽  
I. M. Straeter-Knowlen ◽  
G. H. Hankes ◽  
...  

The current study was designed to test the hypothesis that intracardiac angiotensin-converting enzyme (ACE) activity, chymase-like activity, and angiotensin (ANG) peptide levels are increased and are positively related to wall stress estimates in response to the chronic low pressure volume overload of mitral regurgitation produced by percutaneous chordal rupture in the dog. Chronic mitral regurgitation (MR) resulted in an increase in left ventricular (LV) end-diastolic volume [59 +/- 11 (SD) to 103 +/- 32 ml, P < 0.001], LV mass (96 +/- 17 to 114 +/- 23 g, P < 0.001), and a decrease in the LV mass-to-end-diastolic volume ratio (1.64 +/- 0.22 to 1.16 +/- 0.23 g/ml, P < 0.001) measured by magnetic resonance imaging. In vitro studies of heart tissue extracts demonstrated that the majority of ANG II-forming activity was from chymase-like activity rather than from ACE activity in five normal (83.5 +/- 7.5 vs. 6.04 +/- 5.2%) and seven MR hearts (86 +/- 3.9 vs. 2.6 +/- 1.7%). ACE activity (1.22 +/- 0.22 vs. 3.55 +/- 0.62 mU/g, P < 0.05) and chymase-like activity (9.42 +/- 4.64 vs. 20.60 +/- 8.41 nmol.g-1.min-1, P < 0.05) were increased in MR compared with normal hearts. ACE activity correlated with the LV mass-to-volume ratio (r = -0.93, P < 0.001) and LV diastolic wall stress ( r = 0.71, P < 0.05); however, chymase-like activity did not correlate with any hemodynamic parameter. ANG II levels were significantly higher in the midwall of the left ventricle in MR hearts than in normal controls (85 +/- 39 vs. 27 +/- 16 pg/g, P < 0.01). Our results demonstrate a positive correlation between LV diastolic wall stress and increased ACE activity with increased ANG II stores, suggesting that mechanical wall stress activated intracardiac ACE. Although chymase accounted for most ANG II formation in vitro in extracts of both normal and MR dog hearts, the significance of this enzyme in vivo remains unclear


2005 ◽  
Vol 130 (4) ◽  
pp. 1032-1038 ◽  
Author(s):  
Peng Zhang ◽  
Julius M. Guccione ◽  
Susan I. Nicholas ◽  
Joseph C. Walker ◽  
Philip C. Crawford ◽  
...  

1997 ◽  
Vol 36 (08) ◽  
pp. 259-264
Author(s):  
N. Topuzović

Summary Aim: The purpose of this study was to investigate the changes in blood activity during rest, exercise and recovery, and to assess its influence on left ventricular (LV) volume determination using the count-based method requiring blood sampling. Methods: Forty-four patients underwent rest-stress radionuclide ventriculography; Tc-99m-human serum albumin was used in 13 patients (Group I), red blood cells was labeled using Tc-99m in 17 patients (Group II) in vivo, and in 14 patients (Group III) by modified in vivo/in vitro method. LV volumes were determined by a count-based method using corrected count rate in blood samples obtained during rest, peak exercise and after recovery. Results: In group I at stress, the blood activity decreased by 12.6 ± 5.4%, p <0.05, as compared to the rest level, and increased by 25.1 ± 6.4%, p <0.001, and 12.8 ± 4.5%, p <0.05, above the resting level in group II and III, respectively. This had profound effects on LV volume determinations if only one rest blood aliquot was used: during exercise, the LV volumes significantly decreased by 22.1 ± 9.6%, p <0.05, in group I, whereas in groups II and III it was significantly overestimated by 32.1 ± 10.3%, p <0.001, and 10.7 ± 6.4%, p <0.05, respectively. The changes in blood activity between stress and recovery were not significantly different for any of the groups. Conclusion: The use of only a single blood sample as volume aliquot at rest in rest-stress studies leads to erroneous estimation of cardiac volumes due to significant changes in blood radioactivity during exercise and recovery.


2020 ◽  
Vol 15 (3) ◽  
pp. 193-206
Author(s):  
Brognara Lorenzo ◽  
Salmaso Luca ◽  
Mazzotti Antonio ◽  
Di M. Alberto ◽  
Faldini Cesare ◽  
...  

Background: Chronic wounds are commonly associated with polymicrobial biofilm infections. In the last years, the extensive use of antibiotics has generated several antibiotic-resistant variants. To overcome this issue, alternative natural treatments have been proposed, including the use of microorganisms like probiotics. The aim of this manuscript was to review current literature concerning the application of probiotics for the treatment of infected chronic wounds. Methods: Relevant articles were searched in the Medline database using PubMed and Scholar, using the keywords “probiotics” and “wound” and “injuries”, “probiotics” and “wound” and “ulcer”, “biofilm” and “probiotics” and “wound”, “biofilm” and “ulcer” and “probiotics”, “biofilm” and “ulcer” and “probiotics”, “probiotics” and “wound”. Results: The research initially included 253 articles. After removal of duplicate studies, and selection according to specific inclusion and exclusion criteria, 19 research articles were included and reviewed, accounting for 12 in vitro, 8 in vivo studies and 2 human studies (three articles dealing with animal experiments included also in vitro testing). Most of the published studies about the effects of probiotics for the treatment of infected chronic wounds reported a partial inhibition of microbial growth, biofilm formation and quorum sensing. Discussion: The application of probiotics represents an intriguing option in the treatment of infected chronic wounds with multidrug-resistant bacteria; however, current results are difficult to compare due to the heterogeneity in methodology, laboratory techniques, and applied clinical protocols. Lactobacillus plantarum currently represents the most studied strain, showing a positive application in burns compared to guideline treatments, and an additional mean in chronic wound infections. Conclusions: Although preliminary evidence supports the use of specific strains of probiotics in certain clinical settings such as infected chronic wounds, large, long-term clinical trials are still lacking, and further research is needed.


Sign in / Sign up

Export Citation Format

Share Document