Down syndrome with partial trisomy of chromosome 21 because of a de-novo unbalanced translocation t(13;21)(q10;q22)

2012 ◽  
Vol 21 (4) ◽  
pp. 200-203 ◽  
Author(s):  
Emilie Maciejewski ◽  
Jacqueline Vigneron ◽  
Laetitia Lambert ◽  
Céline Bonnet ◽  
Jean-Michel Hascoët
2019 ◽  
Vol 7 (8) ◽  
Author(s):  
Maria Chiara Pelleri ◽  
Elena Cicchini ◽  
Michael B. Petersen ◽  
Lisbeth Tranebjærg ◽  
Teresa Mattina ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2561-2561
Author(s):  
Katya Gancheva ◽  
Diana Brazma ◽  
Nahid Zarein ◽  
Julie Howard-Reeves ◽  
Phaidra Partheniou ◽  
...  

Abstract Abstract 2561 We present the results of a study demonstrating that the genome profile of RUNX1 in MDS/AML is characterised by hitherto unreported partial deletions and absence of amplifications. This is in stark contrast to reports of chromosome 21 amplifications in ALL. We speculate that the absence of RUNX1 deletions results from them being well below a size detectable by commercial FISH probes. Extra chromosome 21 is the second most common acquired trisomy after (+) 8 in adult myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It is rarely observed as sole abnormality but seen as part of complex karyotype in some 3–7% of the AML (Atlas of Genetics and Cytogenetics in Oncology and Haematology, http://atlasgeneticsoncology.org). Although the gene(s) in trisomy 21 associated with leukemia are unknown, the 21q22 region appears to be critical since it houses the RUNX1 gene. Multiple amplified copies of the RUNX1 carried by marker chromosomes, such as iAML21, are described in both acute lymphoblastic leukemia (ALL) and AML. A common 5.1 Mb amplification containing the RUNX1, miR-802 and genes mapping to the Down syndrome critical region identified in 91 children with iAML21, was shown to be the likely initiating event in this rare form of childhood B-cell ALL (Rand et al., Blood, 2011). In contrast, recent studies of AML in a Down syndrome and a constitutionally normal individual showed lack of RUNX1, ETS2 and ERG involvement (Canzonetta et al., BJH, 2012). Here we present 16 MDS/AML cases with imbalances of chromosome 21 identified by genomic array screening from a cohort of 83 cases. Whole genome screening (aCGH) was performed on presentation samples of MDS /AML and de novo AML cases using an oligonucleotide array platform (Agilent) at 60K, 244K, 400K and 1M density. G banding and FISH analysis were also successfully performed. Gain of an extra copy (trisomy) of chromosome 21 (+21) was found in 9 patients, all but one with complex karyotypes. In 2 AMLs high level amplifications were detected at 21q22, which involved the ETS2 and ERG but not the RUNX1 sequences. While several commercially available RUNX1 FISH probes showed gene multiple signals, custom FISH probes covering the relevant regions confirmed that the amplifications excluded the RUNX1 but affected both EST2 and ERG thus rendering the commercial probes unfit to assess CNA in this genome area. In another two cases with trisomy 12, cryptic loss of 43Kb and 98Kb resp. within the RUNX1 sequences was detected and confirmed by FISH. Furthermore, similar deletions within the 21q22.12 were also found in another 7 cases all of which had diploid set of chromosome 21 but had multiple changes at G banding level and high TGA score. These RUNX1 deletions were variable in size, ranging from 98Kb to 2.7Mb. Although our observations excluded clinical correlations it is note worthy that most of the patients with RUNX1 loss have not achieved complete cytogenetic remission. These findings suggest role for the RUNX1 loss as indicator of progressive disease and provide a novel insight into pathogenesis of MDS/AML. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 36 (5) ◽  
pp. 492-495 ◽  
Author(s):  
Mei-Tsz Su ◽  
Long-Ching Kuan ◽  
Yen-Yin Chou ◽  
Shang-Yi Tan ◽  
Tsung-Cheng Kuo ◽  
...  

2018 ◽  
Vol 48 (1) ◽  
pp. 102
Author(s):  
Susyana Tamin ◽  
Elvie Zulka ◽  
Iman Pradana Maryadi ◽  
Rahmanofa Yunizaf

Latar Belakang: Sindrom Down merupakan kelainan kromosom autosomal yang terjadi akibat trisomi seluruh atau sebagian dari kromosom 21, yang terjadi kurang lebih 1 dari 700 kelahiran hidup. Berbagai studi mendapatkan bahwa gangguan makan (feeding difficulty) dan disfagia merupakan masalah yang umum terjadi dan terkadang persisten pada anak sindrom Down. Tujuan: Memaparkan karakteristik kelainan disfagia fase oral dan fase faring yang dapat timbul pada anak dengan sindrom Down menggunakan instrument pemeriksaan Fiberoptic Endoscopic Evaluation of Swallowing (FEES). Laporan kasus: Dilaporkan 8 pasien anak dengan sindrom Down yang didapatkan dari rekam medis pasien sejak Oktober 2016 hingga September 2017, yang dilakukan pemeriksaan FEES di Poli Endoskopi Bronkoesofagologi Departemen Telinga Hidung Tenggorok-Bedah Kepala Leher (THT-KL) Rumah Sakit Dr. Cipto Mangunkusumo. Metode: Pencarian literatur secara terstruktur dilakukan dengan menggunakan Pubmed, ClinicalKey, Cochrane, dan Google scholar, sesuai dengan pertanyaan klinis berupa bagaimana karakteristik disfagia pada pasien anak dengan sindrom Down melalui pemeriksaan FEES. Pemilihan artikel dilakukan berdasarkan kriteria inklusi dan eksklusi. Hasil didapatkan 1 artikel yang relevan. Hasil: Artikel yang didapat merupakan suatu studi retrospektif yang melaporkan gambaran deskriptif karakteristik disfagia pada anak dengan sindrom Down. Kesimpulan: Kelainan anatomis pada sindrom Down berperan pada terjadinya gangguan makan dan disfagia. ABSTRACTBackground: Down syndrome is an autosomal chromosomal disorder caused by entire or partial trisomy of chromosome 21, which occurs in approximately 1 out of 700 live births. Several studies had found that feeding difficulty and swallowing disorder (dysphagia) are common and persistent problems in children with Down syndrome. Purpose: to describe characteristics of abnormalities that can occur in children with Down syndrome using the Fiberoptic Endoscopic Evaluation of Swallowing (FEES) examination. Case report: 8 Pediatric patients with Down syndrome, obtained from medical record of FEES examination in Endoscopic Bronchoesophagology Clinic of Otorhinolaryngology-Head and Neck Surgery Department (ENT-HNS) Cipto Mangunkusumo Hospital, from October 2016 up to September 2017. Method: A structured literature search was performed using Pubmed, ClinicalKey, Cochrane, and Google scholar, according to clinical question of how the characteristics of dysphagia in pediatric patients with Down syndrome through FEES examination? The selection of articles is based on inclusion and exclusion criteria which resulted in 1 relevant paper. Results: The article obtained was a retrospective study reporting descriptive characteristics of dysphagia in children with Down syndrome. Conclusion: Anatomical abnormalities in children with Down syndrome play a role in eating disorders and dysphagia. Keywords:


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
James D Weisfeld-Adams ◽  
Amanda K Tkachuk ◽  
Kenneth N Maclean ◽  
Naomi L Meeks ◽  
Stuart A Scott

Abstract Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) and in the majority of cases is the result of complete trisomy 21. The hypothesis that the characteristic DS clinical features are due to a single DS critical region (DSCR) at distal chromosome 21q has been refuted by recently reported segmental trisomy 21 cases characterised by microarray-based comparative genomic hybridisation (aCGH). These rare cases have implicated multiple regions on chromosome 21 in the aetiology of distinct features of DS; however, the map of chromosome 21 copy-number aberrations and their associated phenotypes remains incompletely defined. We report a child with ID who was deemed very high risk for DS on antenatal screening (1 in 13) and has partial, but distinct, dysmorphologic features of DS without congenital heart disease (CHD). Oligonucleotide aCGH testing of the proband detected a previously unreported de novo 2.78-Mb duplication on chromosome 21q22.11 that includes 16 genes; however, this aberration does not harbour any of the historical DSCR genes (APP, DSCR1, DYRK1A and DSCAM). This informative case implicates previously under-recognised candidate genes (SOD1, SYNJ1 and ITSN1) in the pathogenesis of specific DS clinical features and supports a critical region for CHD located more distal on chromosome 21q. In addition, this unique case illustrates how the increasing resolution of microarray and high-throughput sequencing technologies can continue to reveal new biology and enhance understanding of widely studied genetic diseases that were originally described over 50 years ago.


2008 ◽  
Vol 17 (4) ◽  
pp. 454-466 ◽  
Author(s):  
Robert Lyle ◽  
Frédérique Béna ◽  
Sarantis Gagos ◽  
Corinne Gehrig ◽  
Gipsy Lopez ◽  
...  

2017 ◽  
Vol 26 (143) ◽  
pp. 160098 ◽  
Author(s):  
Kelley L. Colvin ◽  
Michael E. Yeager

Down syndrome is the most common chromosomal abnormality among live-born infants. Through full or partial trisomy of chromosome 21, Down syndrome is associated with cognitive impairment, congenital malformations (particularly cardiovascular) and dysmorphic features. Immune disturbances in Down syndrome account for an enormous disease burden ranging from quality-of-life issues (autoimmune alopecia) to more serious health issues (autoimmune thyroiditis) and life-threatening issues (leukaemia, respiratory tract infections and pulmonary hypertension). Cardiovascular and pulmonary diseases account for ∼75% of the mortality seen in persons with Down syndrome. This review summarises the cardiovascular, respiratory and immune challenges faced by individuals with Down syndrome, and the genetic underpinnings of their pathobiology. We strongly advocate increased comparative studies of cardiopulmonary disease in persons with and without Down syndrome, as we believe these will lead to new strategies to prevent and treat diseases affecting millions of people worldwide.


Sign in / Sign up

Export Citation Format

Share Document