scholarly journals Next-generation sequencing identified a novel CACNA1A I1379F variant in a familial hemiplegic migraine type 1 pedigree

Medicine ◽  
2021 ◽  
Vol 100 (51) ◽  
pp. e28141
Author(s):  
Huiyan Luan ◽  
Lei Zhang ◽  
Sijin Zhang ◽  
Meng Zhang
Diabetes ◽  
2016 ◽  
Vol 65 (3) ◽  
pp. 710-718 ◽  
Author(s):  
Lue Ping Zhao ◽  
Shehab Alshiekh ◽  
Michael Zhao ◽  
Annelie Carlsson ◽  
Helena Elding Larsson ◽  
...  

2019 ◽  
Vol 2 ◽  
pp. 251581631988163 ◽  
Author(s):  
Neven Maksemous ◽  
Robert A Smith ◽  
Heidi G Sutherland ◽  
Bridget H Maher ◽  
Omar Ibrahim ◽  
...  

Objective: Hemiplegic migraine in both familial (FHM) and sporadic (SHM) forms is a rare subtype of migraine with aura that can be traced to mutations in the CACNA1A, ATP1A2 and SCN1A genes. It is characterised by severe attacks of typical migraine accompanied by hemiparesis, as well as episodes of complex aura that vary significantly between individuals. Methods: Using a targeted next generation sequencing (NGS) multigene panel, we have sequenced the genomic DNA of 172 suspected hemiplegic migraine cases, in whom no mutation had previously been found by Sanger sequencing (SS) of a limited number of exons with high mutation frequency in FHM genes. Results: Genetic screening identified 29 variants, 10 of which were novel, in 35 cases in the three FHM genes ( CACNA1A, ATP1A2 and SCN1A). Interestingly, in this suspected HM cohort, the ATP1A2 gene harboured the highest number of variants with 24/35 cases (68.6%), while CACNA1A ranked the second gene, with 5 variants identified in 7/35 cases (20%). All detected variants were confirmed by SS and were absent in 100 non-migraine healthy control individuals. Assessment of variants with the American College of Medical Genetics and Genomics guidelines classified 8 variants as pathogenic, 3 as likely pathogenic and 18 as variants of unknown significance. Targeted NGS gene panel increased the diagnostic yield by fourfold over iterative SS in our diagnostics facility. Conclusion: We have identified 29 potentially causative variants in an Australian and New Zealand cohort of suspected HM cases and found that the ATP1A2 gene was the most commonly mutated gene. Our results suggest that screening using NGS multigene panels to investigate ATP1A2 alongside CACNA1A and SCN1A is a clinically useful and efficient method.


2016 ◽  
Vol 35 (4) ◽  
pp. 282-285 ◽  
Author(s):  
Maryam Rafati ◽  
Faezeh Mohamadhashem ◽  
Azadeh Hoseini ◽  
Somayeh Darzi Ramandi ◽  
Saeed Reza Ghaffari

2017 ◽  
Vol 117 (08) ◽  
pp. 1534-1548 ◽  
Author(s):  
Qian Liang ◽  
Huanhuan Qin ◽  
Qiulan Ding ◽  
Xiaoling Xie ◽  
Runhui Wu ◽  
...  

SummaryVon Willebrand disease (VWD), the most common inherited bleeding disorder, is characterised by a variable bleeding tendency, heterogeneous laboratory phenotype and race specific distribution of mutations. The present study aimed to determine the correlation of genotype and phenotype in 200 Chinese individuals from 90 unrelated families with VWD. Next generation sequencing (NGS) of the whole coding VWF, copy number analysis of VWF by CNVplex® technique as well as a comprehensive phenotypic assessment were carried out in all index patients (IPs). We identified putative mutations in all IPs except five mild type 1 (85/90, 94.4%). In total, 98 different mutations were detected, 62 (63.3% of which were reported for the first time (23 missense mutations, 1 regulatory mutation, 12 splice site mutations and 26 null mutations). Mutations p.Ser1506Leu and p.Arg1374His/Cys/ Ser were the most frequent mutations in 2A (33% of cases) and 2M VWD (67% of cases), respectively. In addition, mutation p.Arg816Trp was detected repeatedly in type 2N patients, while mutation p.Arg854Gln, extremely common in Caucasians, was not found in our cohort. Thirty-three patients had two or more putative mutations. Unlike most cases of type 1 and type 2 VWD, which were transmitted dominantly, we presented seven severe type 1, two type 2A and one type 2M with autosomal recessive inheritance. Here the phenotypic data of patients with novel mutations will certainly contribute to the better understanding of the molecular genetics of VWF-related phenotypes.Supplementary Material to this article is available online at www.thrombosis-online.com.


2021 ◽  
Author(s):  
Gregorio Serra ◽  
Vincenzo Antona ◽  
Maria Michela D’Alessandro ◽  
Maria Cristina Maggio ◽  
Vincenzo Verde ◽  
...  

Abstract IntroductionPseudohypoaldosteronism type 1 (PHA1) is a rare genetic disease due to the peripheral resistance to aldosterone. Its clinical spectrum includes neonatal salt loss syndrome with hyponatremia and hypochloraemia, hyperkalemia, metabolic acidosis and increased plasmatic levels of aldosterone. Two genetically distinct forms of disease, renal and systemic, have been described, showing a wide clinical expressivity. Mutations in the genes encoding for the subunits of the epithelial sodium channels (ENaC) are responsible for generalized PHA1. Patients’ presentationWe hereby report on two Italian patients with generalized PHA1, coming from the same small town in the center of Sicily. The first patient is a male child, born from the first pregnancy of healthy consanguineous Sicilian parents. A novel SCNN1A (sodium channel epithelial subunit alpha) gene mutation, inherited from both heterozygous parents, was identified by next generation sequencing (NGS) in the homozygous child (and later, also in the heterozygous maternal aunt). A more detailed family history disclosed a possible related twenty-year-old girl, belonging to the same Sicilian small town, with referred neonatal salt loss syndrome associated to hyperkalemia, and subsequent normal growth and neurodevelopment. This second patient had a PHA1 clinical diagnosis when she was about one year old. The genetic investigation was, then, extended to her and to her family, revealing the same mutation in the homozygous girl and in the heterozygous parents.ConclusionsThe neonatologist should consider PHA1 diagnosis in newborns showing hyponatremia, hyperkalemia and metabolic acidosis, after the exclusion of a salting-loss form of adrenogenital syndrome. The increased plasmatic levels of aldosterone and aldosterone/renin ratio, associated to a poor response to steroid administration, confirmed the diagnosis in the first present patient. An accurate family history may be decisive to identify the clinical picture. A multidisciplinary approach and close follow-up evaluations are requested, in view of optimal management, adequate growth and development of patients. Next generation sequencing (NGS) techniques allowed the identification of the SCNN1A gene mutation either in both patients or in other heterozygous family members, enabling also primary prevention of disease. Our report may broaden the knowledge of the genetic and molecular bases of PHA1, improving its clinical characterization and providing useful indications for the treatment of patients. Clinical approach must be personalized, also in relation to long-term survival and potential multiorgan complications.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wu Li ◽  
Lingyun Mei ◽  
Hongsheng Chen ◽  
Xinzhang Cai ◽  
Yalan Liu ◽  
...  

Background. Waardenburg syndrome (WS) is one of the most common forms of syndromic deafness with heterogeneity of loci and alleles and variable expressivity of clinical features. Methods. The technology of single-nucleotide variants (SNV) and copy number variation (CNV) detection was developed to investigate the genotype spectrum of WS in a Chinese population. Results. Ninety WS patients and 24 additional family members were recruited for the study. Fourteen mutations had not been previously reported, including c.808C>G, c.117C>A, c.152T>G, c.803G>T, c.793-3T >G, and c.801delT on PAX3; c.642_650delAAG on MITF; c.122G>T and c.127C>T on SOX10; c.230C>G and c.365C>T on SNAI2; and c.481A>G, c.1018C>G, and c.1015C>T on EDNRB. Three CNVs were de novo and first reported in our study. Five EDNRB variants were associated with WS type 1 in the heterozygous state for the first time, with a detection rate of 22.2%. Freckles occur only in WS type 2. Yellow hair, amblyopia, congenital ptosis, narrow palpebral fissures, and pigmentation spots are rare and unique symptoms in WS patients from China. Conclusions. EDNRB should be considered as another prevalent pathogenic gene in WS type 1. Our study expanded the genotype and phenotype spectrum of WS, and diagnostic next-generation sequencing is promising for WS.


2019 ◽  
Vol 10 ◽  
Author(s):  
Dan-Dan Wang ◽  
Fang-Yuan Hu ◽  
Feng-Juan Gao ◽  
Sheng-Hai Zhang ◽  
Ping Xu ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1066
Author(s):  
Dominika Salamon ◽  
Agnieszka Sroka-Oleksiak ◽  
Artur Gurgul ◽  
Zbigniew Arent ◽  
Magdalena Szopa ◽  
...  

The studies on microbiome in the human digestive tract indicate that fungi could also be one of the external factors affecting development of diabetes. The aim of this study was to evaluate the quantitative and qualitative mycobiome composition in the colon of the adults with type 1 (T1D), n = 26 and type 2 (T2D) diabetes, n = 24 compared to the control group, n = 26. The gut mycobiome was characterized in the stool samples using the analysis of the whole internal transcribed spacer (ITS) region of the fungal rDNA gene cluster by next-generation sequencing (NGS) with increased sensitivity. At the L2 (phylum) level, Basidiomycota fungi were predominant in all 3 study groups. Group T1D presented significantly lower number of Ascomycota compared to the T2D group, and at the L6 (genus) level, the T1D group presented significantly lower number of Saccharomyces genus compared to control and T2D groups. In the T1D group, a significant positive correlation between total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels and fungi of the genus Saccharomyces, and in the T2D group, a negative correlation between the total cholesterol level and Malassezia genus was found. The obtained results seem to be a good foundation to extend the analysis of the relationship between individual genera and species of fungi and the parameters determining the metabolism of carbohydrates and lipids in the human body.


2018 ◽  
Vol 179 (6) ◽  
pp. 391-407 ◽  
Author(s):  
Rafael A Carvalho ◽  
Betsaida Urtremari ◽  
Alexander A L Jorge ◽  
Lucas S Santana ◽  
Elisangela P S Quedas ◽  
...  

Background Loss-of-function germline MEN1 gene mutations account for 75–95% of patients with multiple endocrine neoplasia type 1 (MEN1). It has been postulated that mutations in non-coding regions of MEN1 might occur in some of the remaining patients; however, this hypothesis has not yet been fully investigated. Objective To sequence for the entire MEN1 including promoter, exons and introns in a large MEN1 cohort and determine the mutation profile. Methods and patients A target next-generation sequencing (tNGS) assay comprising 7.2 kb of the full MEN1 was developed to investigate germline mutations in 76 unrelated MEN1 probands (49 familial, 27 sporadic). tNGS results were validated by Sanger sequencing (SS), and multiplex ligation-dependent probe amplification (MLPA) assay was applied when no mutations were identifiable by both tNGS and SS. Results Germline MEN1 variants were verified in coding region and splicing sites of 57/76 patients (74%) by both tNGS and SS (100% reproducibility). Thirty-eight different pathogenic or likely pathogenic variants were identified, including 13 new and six recurrent variants. Three large deletions were detected by MLPA only. No mutation was detected in 16 patients. In untranslated, regulatory or in deep intronic MEN1 regions of the 76 MEN1 cases, no point or short indel pathogenic variants were found in untranslated, although 33 benign/likely benign and three new VUS variants were detected. Conclusions Our study documents that point or short indel mutations in non-coding regions of MEN1 are very rare events. Also, tNGS proved to be a highly effective technology for routine genetic MEN1 testing.


Sign in / Sign up

Export Citation Format

Share Document