Correlation between acid–base parameters measured in arterial blood and venous blood sampled peripherally, from vena cavae superior, and from the pulmonary artery

2008 ◽  
Vol 15 (2) ◽  
pp. 86-91 ◽  
Author(s):  
Marianne Toftegaard ◽  
Stephen E. Rees ◽  
Steen Andreassen
1972 ◽  
Vol 37 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Norval M. Simms ◽  
Don M. Long ◽  
James H. Matthews ◽  
Shelley N. Chou

✓ Oxygen tension and acid-base parameters of cerebral venous blood and cisternal cerebrospinal fluid, as well of femoral arterial blood, were studied in 14 dogs following injection of varying amounts of room air into the right vertebral artery. Acute elevations in oxygen tension were demonstrated in both cerebral venous blood and CSF, whereas hypoxemia occurred concomitantly in systemic arterial blood. Post-embolic increases in carbon dioxide tension with reciprocal diminutions in pH were evident in all sampling sites. The pathophysiological bases for these air-induced alterations are discussed.


1977 ◽  
Author(s):  
M.H. Todd ◽  
J.B. Forrest ◽  
J. Hirsh

Embolisation of the pulmonary vasculature with microspheres releases prostaglandin-1ike substances, PGLS (Piper and Vane, N.Y. Acad. Sei. 180: 363, 1971) but the capacity of autologous blood clots (ABC) to release pulmonary vasoactive substances is disputed. Ten normal mongrel dogs were anesthetised with pentobarbitone sodium and instrumented. Pulmonary venous blood was continuously superfused over isolated tissues for bioassay and then returned to the animal. Injection of ABC into the right atrium increased pulmonary artery pressure from 21 ± 6.5 mm Hg to 38 ± 15 mm Hg (mean ± S.D.), increased arterial pCO2 and decreased arterial pO2. No significant changes in heart rate, systemic arterial blood pressure or cardiac output occurred. In three animals contractions of the blood superfused assay tissues occurred following embolism. This effect was produced in normal assay tissues and those pretreated with antagonists of ACh, Serotonin, Histamine and Catecholamines and could therefore be attributed to PGLS. No cardiovascular or assay tissue tension changes were observed when equivalent volumes of saline or clot lysate were injected into the right atrium.Therefore, pulmonary embolism with ABC can release PGLS which may contribute to the pulmonary artery pressure rise. Vasoactive substances may normally be inactivated in the lung but in some animals appear in pulmonary venous blood.(Supported by the Ontario Heart Foundation)


Author(s):  
Lisha Shastri ◽  
Søren Kjærgaard ◽  
Peter S. Thyrrestrup ◽  
Stephen E. Rees ◽  
Lars P. Thomsen

Abstract Background ABGs are performed in acute conditions as the reference method for assessing the acid-base status of blood. Hyperventilation and breath-holding are common ventilatory changes that occur around the time of sampling, rapidly altering the ‘true’ status of the blood. This is particularly relevant in emergency medicine patients without permanent arterial catheters, where the pain and anxiety of arterial punctures can cause ventilatory changes. This study aimed to determine whether peripheral venous values could be a more reliable measure of blood gases following acute changes in ventilation. Methods To allow for characterisation of ventilatory changes typical of acutely ill patients, but without the confounding influence of perfusion or metabolic disturbances, 30 patients scheduled for elective surgery were studied in a prospective observational study. Following anaesthesia, and before the start of the surgery, ventilator settings were altered to achieve a + 100% or − 60% change in alveolar ventilation (‘hyper-’ or ‘hypoventilation’), changes consistent with the anticipation of a painful arterial puncture commonly encountered in the emergency room. Blood samples were drawn simultaneously from indwelling arterial and peripheral venous catheters at baseline, and at 15, 30, 45, 60, 90 and 120 s following the ventilatory change. Comparisons between the timed arterial (or venous) samples were done using repeated-measures ANOVA, with post-hoc analysis using Bonferroni’s correction. Results Arterial blood pH and PCO2 changed rapidly within the first 15–30s after both hyper- and hypoventilation, plateauing at around 60s (∆pH = ±0.036 and ∆PCO2 = ±0.64 kPa (4.7 mmHg), respectively), with peripheral venous values remaining relatively constant until 60s, and changing minimally thereafter. Mean arterial changes were significantly different at 30s (P < 0.001) when compared to baseline, in response to both hyper- and hypoventilation. Conclusion This study has shown that substantial differences in arterial and peripheral venous acid-base status can be due to acute changes in ventilation, commonly seen in the ER over the 30s necessary to sample arterial blood. If changes are transient, peripheral venous blood may provide a more reliable description of acid-base status.


1982 ◽  
Vol 53 (6) ◽  
pp. 1336-1341 ◽  
Author(s):  
S. Thomas ◽  
G. M. Hughes

Continuous recordings have been made of pH, PO2, and PCO2 of arterial blood (pHa, PaO2, PaCO2) in an extracorporeal circulation during periods of hypoxia (inspired PO2 45–10 Torr) in sea bass, Morone labrax. During moderate hypoxia hyperventilation was accompanied by an increase in pHa. Continuation of moderate hypoxia for periods up to 24 h produces an increase in lactate and a consequent decrease in pHa. During deep hypoxia there is a very brief alkalosis as ventilation increases but a marked decrease in pHa as lactate levels rise. Recovery from hypoxia is associated with an increase in lactate concentration reaching values of more than 6 meq X l-1 following deep hypoxia, and pHa falls to 7.73. PaO2 recovers rapidly, but recovery of PaCO2 is not so rapid and together with the residual hyperventilation indicates that the fish is paying off an O2 debt.


1996 ◽  
Vol 199 (4) ◽  
pp. 933-940
Author(s):  
B Tufts ◽  
S Currie ◽  
J Kieffer

In vivo experiments were carried out to determine the relative effects of carbonic anhydrase (CA) infusion or inhibition on carbon dioxide (CO2) transport and acid-base status in the arterial and venous blood of sea lampreys recovering from exhaustive exercise. Infusion of CA into the extracellular fluid did not significantly affect CO2 transport or acid-base status in exercised lampreys. In contrast, infusion of the CA inhibitor acetazolamide resulted in a respiratory acidosis in the blood of recovering lampreys. In acetazolamide-treated lampreys, the post-exercise extracellular pH (pHe) of arterial blood was significantly lower than that in the saline-infused (control) lampreys. The calculated arterial and venous partial pressure of carbon dioxide (PCO2) and the total CO2 concentration in whole blood (CCO2wb) and red blood cells (CCO2rbc) during recovery in the acetazolamide-infused lampreys were also significantly greater than those values in the saline-infused control lampreys. These results suggest that the CO2 reactions in the extracellular compartment of lampreys may already be in equilibrium and that the access of plasma bicarbonate to CA is probably not the sole factor limiting CO2 transport in these animals. Furthermore, endogenous red blood cell CA clearly has an important role in CO2 transport in exercising lampreys.


1982 ◽  
Vol 4 (4) ◽  
pp. 189-191
Author(s):  
P.G. van der Wal ◽  
H.G. Hulshof ◽  
G. van Essen ◽  
A. Meijering

Sign in / Sign up

Export Citation Format

Share Document