Relative effects of carbonic anhydrase infusion or inhibition on carbon dioxide transport and acid-base status in the sea lamprey Petromyzon marinus following exercise

1996 ◽  
Vol 199 (4) ◽  
pp. 933-940
Author(s):  
B Tufts ◽  
S Currie ◽  
J Kieffer

In vivo experiments were carried out to determine the relative effects of carbonic anhydrase (CA) infusion or inhibition on carbon dioxide (CO2) transport and acid-base status in the arterial and venous blood of sea lampreys recovering from exhaustive exercise. Infusion of CA into the extracellular fluid did not significantly affect CO2 transport or acid-base status in exercised lampreys. In contrast, infusion of the CA inhibitor acetazolamide resulted in a respiratory acidosis in the blood of recovering lampreys. In acetazolamide-treated lampreys, the post-exercise extracellular pH (pHe) of arterial blood was significantly lower than that in the saline-infused (control) lampreys. The calculated arterial and venous partial pressure of carbon dioxide (PCO2) and the total CO2 concentration in whole blood (CCO2wb) and red blood cells (CCO2rbc) during recovery in the acetazolamide-infused lampreys were also significantly greater than those values in the saline-infused control lampreys. These results suggest that the CO2 reactions in the extracellular compartment of lampreys may already be in equilibrium and that the access of plasma bicarbonate to CA is probably not the sole factor limiting CO2 transport in these animals. Furthermore, endogenous red blood cell CA clearly has an important role in CO2 transport in exercising lampreys.

1989 ◽  
Vol 66 (6) ◽  
pp. 2895-2900 ◽  
Author(s):  
T. I. Musch ◽  
B. S. Warfel ◽  
R. L. Moore ◽  
D. R. Larach

We compared the effects of three different anesthetics (halothane, ketamine-xylazine, and diethyl ether) on arterial blood gases, acid-base status, and tissue glycogen concentrations in rats subjected to 20 min of rest or treadmill exercise (10% grade, 28 m/min). Results demonstrated that exercise produced significant increases in arterial lactate concentrations along with reductions in arterial Pco2 (PaCO2) and bicarbonate concentrations in all rats compared with resting values. Furthermore, exercise produced significant reductions in the glycogen concentrations in the liver and soleus and plantaris muscles, whereas the glycogen concentrations found in the diaphragm and white gastrocnemius muscles were similar to those found at rest. Rats that received halothane and ketamine-xylazine anesthesia demonstrated an increase in Paco2 and a respiratory acidosis compared with rats that received either anesthesia. These differences in arterial blood gases and acid-base status did not appear to have any effect on tissue glycogen concentrations, because the glycogen contents found in liver and different skeletal muscles were similar to one another cross all three anesthetic groups. These data suggest that even though halothane and ketamine-xylazine anesthesia will produce a significant amount of ventilatory depression in the rat, both anesthetics may be used in studies where changes in tissue glycogen concentrations are being measured and where adequate general anesthesia is required.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255829
Author(s):  
Leander Gaarde ◽  
Stefanie Kolstrup ◽  
Peter Bollen

In anaesthetic practice the risk of hypoxia and arterial blood gas disturbances is evident, as most anaesthetic regimens depress the respiratory function. Hypoxia may be extended during recovery, and for this reason we wished to investigate if oxygen supply during a one hour post-operative period reduced the development of hypoxia and respiratory acidosis in rats anaesthetized with fentanyl/fluanisone and midazolam. Twelve Sprague Dawley rats underwent surgery and were divided in two groups, breathing either 100% oxygen or atmospheric air during a post-operative period. The peripheral blood oxygen saturation and arterial acid-base status were analyzed for differences between the two groups. We found that oxygen supply after surgery prevented hypoxia but did not result in a significant difference in the blood acid-base status. All rats developed respiratory acidosis, which could not be reversed by supplemental oxygen supply. We concluded that oxygen supply improved oxygen saturation and avoided hypoxia but did not have an influence on the acid-base status.


1986 ◽  
Vol 123 (1) ◽  
pp. 93-121 ◽  
Author(s):  
C. L. Milligan ◽  
C. M. Wood

Exhaustive exercise induced a severe short-lived (0–1 h) respiratory, and longer-lived (0–4 h) metabolic, acidosis in the extracellular fluid of the rainbow trout. Blood ‘lactate’ load exceeded blood ‘metabolic acid’ load from 1–12 h after exercise. Over-compensation occurred, so that by 8–12 h, metabolic alkalosis prevailed, but by 24 h, resting acid-base status had been restored. Acid-base changes were similar, and lactate levels identical, in arterial and venous blood. However, at rest venous RBC pHi was significantly higher than arterial (7.42 versus 7.31). After exercise, arterial RBC pHi remained constant, whereas venous RBC pHi fell significantly (to 7.18) but was fully restored by 1 h. Resting mean whole-body pHi, measured by DMO distribution, averaged approx. 7.25 at a pHe of approx. 7.82 and fell after exercise to a low of 6.78 at a pHe of approx. 7.30. Whole-body pHi was slower to recover than pHe, requiring up to 12 h, with no subsequent alkalosis. Whole-body ECFV decreased by about 70 ml kg-1 due to a fluid shift into the ICF. Net H+ excretion to the water increased 1 h after exercise accompanied by an elevation in ammonia efflux. At 8–12 h, H+ excretion was reduced to resting levels and at 12–24 h, a net H+ uptake occurred. Lactate excretion amounted to approx. 1% of the net H+ excretion and only approx. 2% of the whole blood load. Only a small amount of the anaerobically produced H+ in the ICF appeared in the ECF and subsequently in the water. By 24 h, all the H+ excreted had been taken back up, thus correcting the extracellular alkalosis. The bulk of the H+ load remained intracellular, to be cleared by aerobic metabolism.


Author(s):  
Lisha Shastri ◽  
Søren Kjærgaard ◽  
Peter S. Thyrrestrup ◽  
Stephen E. Rees ◽  
Lars P. Thomsen

Abstract Background ABGs are performed in acute conditions as the reference method for assessing the acid-base status of blood. Hyperventilation and breath-holding are common ventilatory changes that occur around the time of sampling, rapidly altering the ‘true’ status of the blood. This is particularly relevant in emergency medicine patients without permanent arterial catheters, where the pain and anxiety of arterial punctures can cause ventilatory changes. This study aimed to determine whether peripheral venous values could be a more reliable measure of blood gases following acute changes in ventilation. Methods To allow for characterisation of ventilatory changes typical of acutely ill patients, but without the confounding influence of perfusion or metabolic disturbances, 30 patients scheduled for elective surgery were studied in a prospective observational study. Following anaesthesia, and before the start of the surgery, ventilator settings were altered to achieve a + 100% or − 60% change in alveolar ventilation (‘hyper-’ or ‘hypoventilation’), changes consistent with the anticipation of a painful arterial puncture commonly encountered in the emergency room. Blood samples were drawn simultaneously from indwelling arterial and peripheral venous catheters at baseline, and at 15, 30, 45, 60, 90 and 120 s following the ventilatory change. Comparisons between the timed arterial (or venous) samples were done using repeated-measures ANOVA, with post-hoc analysis using Bonferroni’s correction. Results Arterial blood pH and PCO2 changed rapidly within the first 15–30s after both hyper- and hypoventilation, plateauing at around 60s (∆pH = ±0.036 and ∆PCO2 = ±0.64 kPa (4.7 mmHg), respectively), with peripheral venous values remaining relatively constant until 60s, and changing minimally thereafter. Mean arterial changes were significantly different at 30s (P < 0.001) when compared to baseline, in response to both hyper- and hypoventilation. Conclusion This study has shown that substantial differences in arterial and peripheral venous acid-base status can be due to acute changes in ventilation, commonly seen in the ER over the 30s necessary to sample arterial blood. If changes are transient, peripheral venous blood may provide a more reliable description of acid-base status.


Blood ◽  
1948 ◽  
Vol 3 (4) ◽  
pp. 329-348 ◽  
Author(s):  
HERRMAN L. BLUMGART ◽  
MARK D. ALTSCHULE

Abstract The cardiac and respiratory adjustments in chronic anemia and their clinical manifestations have been reviewed. When the oxygen carrying capacity of the blood is diminished, an adequate supply of oxygen to the tissues is maintained by an increased cardiac output, an increased velocity of blood flow, and a relatively more complete abstraction of the oxygen from the blood as it passes through the capillaries. With the increased blood flow, the average peripheral resistance is decreased but the state of the small blood vessels is not uniform everywhere; the blood flow in the hands and kidneys, for instance, may be reduced, while that of other parts of the body is increased. The total oxygen consumption of the body in anemia is not strikingly altered. The blood volume generally is slightly reduced but the plasma volume is normal. The deviations from the normal values vary from patient to patient, but generally are definite when the hemoglobin values are less than 50 per cent and are greatest at the lowest levels of hemoglobin concentration. The close interrelationship between the cardiovascular and respiratory systems is exemplified by the coincident changes in the respiratory system in anemia. The rate and depth of respiration often are increased together with a lowering in the vital capacity and its subdivisions, the reserve and complemental air volumes. The resid- ual air is somewhat increased. These deviations from the normal are similar to those observed in pulmonary congestion or edema and denote a loss of elasticity and expansibility favoring the occurrence of exertional dyspnea. The arterial blood saturation is usually normal at rest but, during exertion, a significant lowering becomes apparent. The importance of hemoglobin in the transport of carbon dioxide is reviewed; the decreased availability of hemoglobin as a buffer in carbon dioxide transport in anemia is compensated by the increased ventilation of the blood in the lungs, rendering the arterial blood somewhat alkalotic. The red cells also play an important role in regard to the respiratory enzyme, carbonic anhydrase. In the anemias due to blood loss, malnutrition, chronic infection, uremia, or leukemia, the blood carbonic anhydrase activity is parallel to the decrease in hemoglobin level leading to a deficiency not only of oxygen carrying capacity but also a decreased ability to absorb carbon dioxide from the tissues and to release it in the lungs. The following factors, many of which are closely interrelated, are operative in the production of dyspnea in anemic patients: the increased respiratory minute volume, the decreased vital capacity and its subdivisions, the abnormalities in carbon dioxide transport and dissociation, the reduced arterial oxygen capacity and the decreased blood oxygen saturation during effort, and the frequently observed elevated blood lactic acid values. The symptoms and signs exhibited by anemic patients, including palpitation and breathlessness on exertion, tachycardia, cardiac dilatation and hypertrophy, are described. In addition to an apical systolic murmur, other systolic and diastolic murmurs are occasionally heard. The arterial blood pressure is frequently lowered in anemia; the venous pressure is generally within the limits of normal. Electrocardiographic abnormalities occur in approximately one-quarter of anemic patients but are minor and not specific in character. The occurrence of angina pectoris, congestive failure, and intermittent claudication in some patients with the development of anemia, and disappearance of these conditions as the anemia is alleviated, is discussed with particular reference to the underlying physiologic mechanisms.


1987 ◽  
Vol 253 (3) ◽  
pp. R450-R458 ◽  
Author(s):  
E. R. Swenson ◽  
T. H. Maren

We studied the roles of gill and erythrocyte carbonic anhydrase in normal CO2 transfer (metabolic CO2 elimination) and in HCO3- excretion during metabolic alkalosis in the resting and swimming dogfish shark, Squalus acanthias. Gill carbonic anhydrase was selectively inhibited (greater than 98.5%) by 1 mg/kg benzolamide, which caused no physiologically significant red cell carbonic anhydrase inhibition (approximately 40%). Enzyme in both tissues was inhibited by 30 mg/kg methazolamide (greater than 99%). Both drugs caused equivalent reductions in HCO3- excretion following an infusion of 9 mmol/kg NaHCO3 as measured by the rate of fall in plasma HCO3- and by transfer into seawater. Methazolamide (red cell and gill carbonic anhydrase inhibition) caused a respiratory acidosis in fish with normal acid-base status, whereas benzolamide (gill carbonic anhydrase inhibition) did not. The only effect observed with benzolamide in these fish was a small elevation in plasma HCO3-. These findings, taken together, suggest that red cell carbonic anhydrase is required for normal metabolic CO2 elimination by the gill. Although carbonic anhydrase is located in the respiratory epithelium, it appears to have no quantitative role in transfer of metabolic CO2 to the environment, a pattern similar to all terrestrial vertebrates. However, carbonic anhydrase in the gill is crucial to this organ's function in acid-base regulation, both in the excretion of H+ or HCO3- generated in normal metabolism and in various acid-base disturbances.


1979 ◽  
Vol 82 (1) ◽  
pp. 345-355
Author(s):  
R. G. BOUTILIER ◽  
D. J. RANDALL ◽  
G. SHELTON ◽  
D. P. TOEWS

Cutaneous CO2 excretion is reduced as the skin dries during dehydration but an increase in breath frequency acts to regulate the arterial blood Pcoco2 and thus pHα. Moreover, the toad does not urinate and water is reabsorbed from the bladder to replace that lost by evaporation at the skin and lung surfaces. The animal does, however, produce a very acid bladder urine to conserve circulating levels of plasma [HCO3-] and this together with an increased ventilation effectively maintains the blood acid-base status for up to 48 h of dehydration in air. Water loss and acid production are presumably also reduced by the animal's behaviour; animals remain still, in a crouched position or in a pile if left in groups. Dehydrated toads are less able than hydrated toads to regulate blood pH during hypercapnia: they hyperventilate and mobilize body bicarbonate stores in much the same fashion as hydrated animals but due to the restrictions on cutaneous CO2 excretion and renal output, there is comparatively little reduction in the PCOCO2 difference between arterial blood and inspired gas thereby resulting in a more severe respiratory acidosis. These factors further contribute to the persistent acidosis which continues even when the animals are returned to air.


2018 ◽  
Vol 35 (5) ◽  
pp. 511-518
Author(s):  
Scott E. Rudkin ◽  
Craig L. Anderson ◽  
Tristan R. Grogan ◽  
David A. Elashoff ◽  
Richard M. Treger

Background and Objectives: In severe circulatory failure agreement between arterial and mixed venous or central venous values is poor; venous values are more reflective of tissue acid–base imbalance. No prior study has examined the relationship between peripheral venous blood gas (VBG) values and arterial blood gas (ABG) values in hemodynamic compromise. The objective of this study was to examine the correlation between hemodynamic parameters, specifically systolic blood pressure (SBP) and the arterial–peripheral venous (A-PV) difference for all commonly used acid–base parameters (pH, Pco 2, and bicarbonate). Design, Setting, Participants, and Measurements: Data were obtained prospectively from adult patients with trauma. When an ABG was obtained for clinical purposes, a VBG was drawn as soon as possible. Patients were excluded if the ABG and VBG were drawn >10 minutes apart. Results: The correlations between A-PV pH, A-PV Pco 2, and A-PV bicarbonate and SBP were not statistically significant ( P = .55, .17, and .09, respectively). Although patients with hypotension had a lower mean arterial and peripheral venous pH and bicarbonate compared to hemodynamically stable patients, mean A-PV differences for pH and Pco 2 were not statistically different ( P = .24 and .16, respectively) between hypotensive and normotensive groups. Conclusions: In hypovolemic shock, the peripheral VBG does not demonstrate a higher CO2 concentration and lower pH compared to arterial blood. Therefore, the peripheral VBG is not a surrogate for the tissue acid–base status in hypovolemic shock, likely due to peripheral vasoconstriction and central shunting of blood to essential organs. This contrasts with the selective venous respiratory acidosis previously demonstrated in central venous and mixed venous measurements in circulatory failure, which is more reflective of acid–base imbalance at the tissue level than arterial blood. Further work needs to be done to better define the relationship between ABG and both central and peripheral VBG values in various types of shock.


1979 ◽  
Vol 47 (4) ◽  
pp. 818-826 ◽  
Author(s):  
S. L. Britton ◽  
L. O. Lutherer ◽  
D. G. Davies

Total and regional cerebral blood flow (CBF), and cerebrospinal fluid (CSF), and arterial blood acid-base status were measured in 26 chloralose-urethan-anesthetized dogs before and after 30 and 60 min of ventriculocisternal perfusion with artificial CSF equilibrated with 7% CO2 and containing either low (8.7 or 9.1 meq/l), normal (19.6 meq/l), or high (34.7 meq/l) bicarbonate ion concentration ([HCO3-]). An inverse linear relationship was observed between the CSF pH and total CBF. Regional blood flow changes were greater in structures that were closest to the ventricular system. In addition, regional blood flow changes were greater in all tissues studied after 60 min of perfusion than after 30. Perfusion with the control [HCO3-] caused no significant changes in either acid-base status or CBF. We believe that the regional cerebral blood flow changes are the result of changes in the H+ concentration gradient across the cerebral extracellular fluid (ECF) space due to the diffusional exchange of HCO3- between CSF and ECF. It is concluded that cerebral ECF acidity is important in the local regulation of cerebral blood flow.


Sign in / Sign up

Export Citation Format

Share Document