scholarly journals Weight Bearing Through Lower Limbs in a Standing Frame with and Without Arm Support and Low-Magnitude Whole-Body Vibration in Men and Women with Complete Motor Paraplegia

2012 ◽  
Vol 91 (4) ◽  
pp. 300-308 ◽  
Author(s):  
Kathie A. Bernhardt ◽  
Lisa A. Beck ◽  
Jeffry L. Lamb ◽  
Kenton R. Kaufman ◽  
Shreyasee Amin ◽  
...  
2014 ◽  
Vol 38 (2) ◽  
pp. 178-186 ◽  
Author(s):  
Lisa-Ann Wuermser ◽  
Lisa A. Beck ◽  
Jeffry L. Lamb ◽  
Elizabeth J. Atkinson ◽  
Shreyasee Amin

2018 ◽  
Vol 4 (1) ◽  
pp. 56-66
Author(s):  
M. Cvetkovic ◽  
J. Santos Baptista ◽  
M. A. Pires Vaz

The whole-body vibration occurs in many occupational activities, promoting discomfort in the working environment and inducing a variety of psycho – physical changes where consequences as a permanent dysfunction of certain parts of the organism may occur. The main goal of this short systematic review is finding the articles with the most reliable results relating whole-body vibrations to buses and, to compare them with the results of drivers’ lower limbs musculoskeletal disease which occurs as a consequence of many year exposure. PRISMA Statement Methodology was used and thereby 27 Scientific Journals and 25 Index - Database were searched through where 3996 works were found, of which 24 were included in this paper. As a leading standard for analysis of the whole-body vibration the ISO 2631 – 1 is used, while in some papers as an additional standard the ISO 2631-5 is also used for the sake of better understanding the vibrations. Furthermore, the European Directive 2002/44 / EC is included where a daily action exposure to the whole-body vibrations is exactly deter-mined. All the results presented in the paper were compared with the aforesaid standards. After having searched the databases, papers that deal with research of the impact of the vibration on the driver’s lower limbs did not contain any information’s on the described problem.


2010 ◽  
Vol 29 (4) ◽  
pp. 465-472 ◽  
Author(s):  
Michelle A. Lynch ◽  
Michael D. Brodt ◽  
Abby L. Stephens ◽  
Roberto Civitelli ◽  
Matthew J. Silva

2015 ◽  
Vol 32 (3) ◽  
pp. 235-241 ◽  
Author(s):  
George Dallas ◽  
Giorgos Paradisis ◽  
Paschalis Kirialanis ◽  
Vassilis Mellos ◽  
Polikseni Argitaki ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Maria Grazia Benedetti ◽  
Giulia Furlini ◽  
Alessandro Zati ◽  
Giulia Letizia Mauro

Physical exercise is considered an effective means to stimulate bone osteogenesis in osteoporotic patients. The authors reviewed the current literature to define the most appropriate features of exercise for increasing bone density in osteoporotic patients. Two types emerged: (1) weight-bearing aerobic exercises, i.e., walking, stair climbing, jogging, and Tai Chi. Walking alone did not appear to improve bone mass; however it is able to limit its progressive loss. In fact, in order for the weight-bearing exercises to be effective, they must reach the mechanical intensity useful to determine an important ground reaction force. (2) Strength and resistance exercises: these are carried out with loading (lifting weights) or without (swimming, cycling). For this type of exercise to be effective a joint reaction force superior to common daily activity with sensitive muscle strengthening must be determined. These exercises appear extremely site-specific, able to increase muscle mass and BMD only in the stimulated body regions. Other suggested protocols are multicomponent exercises and whole body vibration. Multicomponent exercises consist of a combination of different methods (aerobics, strengthening, progressive resistance, balancing, and dancing) aimed at increasing or preserving bone mass. These exercises seem particularly indicated in deteriorating elderly patients, often not able to perform exercises of pure reinforcement. However, for these protocols to be effective they must always contain a proportion of strengthening and resistance exercises. Given the variability of the protocols and outcome measures, the results of these methods are difficult to quantify. Training with whole body vibration (WBV): these exercises are performed with dedicated devices, and while it seems they have effect on enhancing muscle strength, controversial findings on improvement of BMD were reported. WBV seems to provide good results, especially in improving balance and reducing the risk of falling; in this, WBV appears more efficient than simply walking. Nevertheless, contraindications typical of senility should be taken into account.


Author(s):  
Andrzej Szopa ◽  
Małgorzata Domagalska-Szopa ◽  
Andrzej Siwiec ◽  
Ilona Kwiecień-Czerwieniec

This study investigated the effectiveness of whole-body vibration (WBV) training incorporated into a conventional physiotherapy (PT) program (WBV-assisted training) in improving blood flow in the lower limbs and range of motion in the lower limb joints of children with myelomeningocele (MMC). A total of 31 children with MMC (7–15 years old) underwent a 6 weeks treatment program consisting of 2 weeks of conventional PT followed by 4 weeks of WBV-assisted training. The assessment comprised two parts: evaluation of lower limb joint range of motion and Doppler ultrasonography of the superficial femoral, popliteal, and anterior tibial arteries and was performed three times for each of the participants (at baseline, after 10 sessions of PT but before WBV-assisted training, and after 20 sessions of WBV-assisted training). Our results showed that WBV-assisted training significantly improved lower limb circulation in patients with MMC, increasing velocity and reducing resistivity in all tested arteries. Moreover, WBV-assisted training alleviated lower-extremity contractures, especially of the knee. Thus, WBV-assisted training is effective as an adjunctive rehabilitation program for improving functional mobility in children with MMC.


2018 ◽  
Author(s):  
Amit N. Pujari ◽  
Richard D. Neilson ◽  
Marco Cardinale

AbstractBackgroundIndirect vibration stimulation i.e. whole body vibration or upper limb vibration, has been suggested increasingly as an effective exercise intervention for sports and rehabilitation applications. However, there is a lack of evidence regarding the effects of whole body vibration (WBV) stimulation superimposed to graded isometric contractions superimposed on. For this scope, we investigated the effects of WBV superimposed to graded isometric contractions in the lower limbs on muscle activation. We also assessed the agonist-antagonist co-activation during this type of exercise.Twelve healthy volunteers were exposed to WBV superimposed to graded isometric contractions, at 20, 40, 60, 80 and 100% of the maximum voluntary contractions (V) or just isometric contractions performed on a custom designed horizontal leg press Control (C). Tested stimulation consisted of 30Hzand 50Hz frequencies and 0.5mm and 1.5mm amplitudes. Surface electromyographic activity of Vastus Lateralis (VL), Vastus Medialis (VM) and Biceps Femoris (BF) were measured during V and C conditions. Co-contraction activity of agonist-antagonist muscles was also quantified. The trials were performed in random order.ResultsBoth the prime mover, (VL) and the antagonist, (BF) displayed significantly higher (P < 0.05) EMG activity with the V than the C condition. For both the VL and BF, the increase in mean EMGrms values depended on the frequency, amplitude and muscle contraction level with 50Hz-0.5mm stimulation inducing the largest neuromuscular activity. 50Hz-0.5mm V condition also led to co-activation ratios significantly (P< 0.05) higher at 40, 80 and 100% of MVC than the C condition.ConclusionsOur results show that the isometric contraction superimposed on vibration stimulation leads to higher neuromuscular activity compared to isometric contraction alone in the lower limbs. Compared to the control condition, the vibratory stimulation leads to higher agonist-antagonist co-activation of the muscles around the knee joint in all vibration conditions and effort levels. The combination of vibration magnitude (frequency and amplitude) and the level of muscle contraction affect neuromuscular activity rather than vibration frequency alone. Results of this study suggest that more parameters need to be taken into consideration when designing vibration exercise programs for sports and rehabilitation purposes.


2011 ◽  
Vol 301 (6) ◽  
pp. R1748-R1754 ◽  
Author(s):  
Mickael Coupé ◽  
Ming Yuan ◽  
Claire Demiot ◽  
Yanqiang Q. Bai ◽  
Shizhong Z. Jiang ◽  
...  

Whole body vibration with resistive exercise is a promising countermeasure against some weightlessness-induced dysfunctions. Our objective was to study whether the combination of low-magnitude whole body vibration with a resistive exercise can prevent the cardiovascular deconditioning induced by a nonstrict 60-day head-down bed rest (Earth Star International Bed Rest Experiment Project). Fourteen healthy men participated in this study. We recorded electrocardiograms and blood pressure waves by means of a noninvasive beat-by-beat measurement system (Cardiospace, integrated by Centre National d'Etudes Spatiales and Astronaut Center of China) during an orthostatic test (20 min of 75-degree head-up tilt test) before and immediately after bed rest. We estimated heart rate, blood pressure, cardiac output, stroke volume, total peripheral resistance, baroreflex sensitivity, and heart rate variability. Low-magnitude whole body vibration with resistive exercise prevented an increase of the sympathetic index (reflecting the sympathovagal balance of cardiac autonomic control) and limited the decrease of the spontaneous baroreflex sensitivity induced by 60 days of head-down bed rest. However, this countermeasure had very little effect on cardiac hemodynamics and did not improve the orthostatic tolerance. This combined countermeasure did not efficiently prevent orthostatic intolerance but prevents changes in the autonomic nervous system associated with cardiovascular deconditioning. The underlying mechanisms remain hypothetical but might involve cutaneous and muscular mechanoreceptors.


Sign in / Sign up

Export Citation Format

Share Document