Machine learning algorithms using routinely collected data do not adequately predict viremia to inform targeted services in postpartum women living with HIV

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Pamela M. Murnane ◽  
James Ayieko ◽  
Eric Vittinghoff ◽  
Monica Gandhi ◽  
Chaplain Katumbi ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
André F. M. Batista ◽  
Carmen S. G. Diniz ◽  
Eliana A. Bonilha ◽  
Ichiro Kawachi ◽  
Alexandre D. P. Chiavegatto Filho

Abstract Background Recent decreases in neonatal mortality have been slower than expected for most countries. This study aims to predict the risk of neonatal mortality using only data routinely available from birth records in the largest city of the Americas. Methods A probabilistic linkage of every birth record occurring in the municipality of São Paulo, Brazil, between 2012 e 2017 was performed with the death records from 2012 to 2018 (1,202,843 births and 447,687 deaths), and a total of 7282 neonatal deaths were identified (a neonatal mortality rate of 6.46 per 1000 live births). Births from 2012 and 2016 (N = 941,308; or 83.44% of the total) were used to train five different machine learning algorithms, while births occurring in 2017 (N = 186,854; or 16.56% of the total) were used to test their predictive performance on new unseen data. Results The best performance was obtained by the extreme gradient boosting trees (XGBoost) algorithm, with a very high AUC of 0.97 and F1-score of 0.55. The 5% births with the highest predicted risk of neonatal death included more than 90% of the actual neonatal deaths. On the other hand, there were no deaths among the 5% births with the lowest predicted risk. There were no significant differences in predictive performance for vulnerable subgroups. The use of a smaller number of variables (WHO’s five minimum perinatal indicators) decreased overall performance but the results still remained high (AUC of 0.91). With the addition of only three more variables, we achieved the same predictive performance (AUC of 0.97) as using all the 23 variables originally available from the Brazilian birth records. Conclusion Machine learning algorithms were able to identify with very high predictive performance the neonatal mortality risk of newborns using only routinely collected data.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


2019 ◽  
Vol 1 (2) ◽  
pp. 78-80
Author(s):  
Eric Holloway

Detecting some patterns is a simple task for humans, but nearly impossible for current machine learning algorithms.  Here, the "checkerboard" pattern is examined, where human prediction nears 100% and machine prediction drops significantly below 50%.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1290-P
Author(s):  
GIUSEPPE D’ANNUNZIO ◽  
ROBERTO BIASSONI ◽  
MARGHERITA SQUILLARIO ◽  
ELISABETTA UGOLOTTI ◽  
ANNALISA BARLA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document