The ideal patient profile for new beta-lactam/beta-lactamase inhibitors

2018 ◽  
Vol 31 (6) ◽  
pp. 587-593 ◽  
Author(s):  
Philippe Montravers ◽  
Matteo Bassetti
Author(s):  
Shawnm Ahmed Aziz

Antibiotic resistance has become a major world health challenge and has limited the ability of physician's treatment. Staphylococcus aureus the most notorious pathogens causes morbidity and mortality especially in burn patients. However, Staphylococcus aureus rapidly acquired resistance to multiple antibiotics. Vancomycin, a glycopeptide antibiotic remains a drug of choice for treatment of severe Methicillin Resistance S. aureus infections. This study aimed to detect the emergence of beta-lactam and glycopeptide resistance genes. 50 clinical specimens of S. aureus collected from burn patients in burn and plastic surgery units in Sulaimani-Iraq city. All specimens were confirmed to be positive for S. aureus. All the isolates were assessed for their susceptibility to different antibiotics depending on NCCL standards, followed by Extended Spectrum Beta Lactamase detection by double disk diffusion synergy test. The production of β- lactamases was evaluated in the isolated strains by several routine methods and polymerase chain reaction. Among the isolates 94% were Methicillin resistance and 34.28% were Extended Spectrum Beta Lactamase producer. PCR based molecular technique was done for the bla genes related to β- lactamase enzymes by the specific primers, as well as genes which related to reduced sensitivity to Vancomycin were detected. The results indicated that all isolated showed the PBP1, PBP2, PBP3, PBP4, trfA and trfB, graSR, vraS except the vraR gene and the prolonged therapy of Methicillin resistance infection with teicoplanin have been associated with progress of resistance and the rise of tecoplanin resistance may be a prologue to evolving Vancomycin resistance. In conclusion, beta-lactam over taking can rise Vancomycin- Intermediate S. aureus strains leading to appearance of Vancomycin resistance although the treatment of Vancomycin resistant infections is challenging.


1997 ◽  
Vol 41 (4) ◽  
pp. 721-727 ◽  
Author(s):  
P D Lister ◽  
A M Prevan ◽  
C C Sanders

An in vitro pharmacokinetic model was used to study the pharmacodynamics of piperacillin-tazobactam and piperacillin-sulbactam against gram-negative bacilli producing plasmid-encoded beta-lactamases. Logarithmic-phase cultures were exposed to peak antibiotic concentrations observed in human serum after the administration of intravenous doses of 3 g of piperacillin and 0.375 g of tazobactam or 0.5 g of sulbactam. Piperacillin and inhibitor were either dosed simultaneously or piperacillin was dosed sequentially 0.5 h after dosing with the inhibitor. In studies with all four test strains, the pharmacodynamics observed after simultaneous dosing were similar to those observed with the sequential regimen. Since the ratio between piperacillin and tazobactam was in constant fluctuation after sequential dosing, these data suggest that the pharmacodynamics of the piperacillin-inhibitor combinations were not dependent upon maintenance of a critical ratio between the components. Furthermore, when regrowth was observed, the time at which bacterial counts began to increase was similar between the simultaneous and sequential dosing regimens. Since the pharmacokinetics of the inhibitors were the same for all regimens, these data suggest that the length of time that the antibacterial activity was maintained over the dosing interval with these combinations was dictated by the pharmacokinetics of the beta-lactamase inhibitor in the combination. The antibacterial activity of the combination appeared to be lost when the amount of inhibitor available fell below some critical concentration. This critical concentration varied depending upon the type and amount of enzyme produced, as well as the specific inhibitor used. These results indicate that the antibacterial activity of drug-inhibitor combinations, when dosed at their currently recommended ratios, is more dependent on the pharmacokinetics of the inhibitor than on those of the beta-lactam drug.


1991 ◽  
Vol 35 (5) ◽  
pp. 813-818 ◽  
Author(s):  
N Lachance ◽  
C Gaudreau ◽  
F Lamothe ◽  
L A Lariviere

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shamshul Ansari ◽  
Rabindra Dhital ◽  
Sony Shrestha ◽  
Sangita Thapa ◽  
Ram Puri ◽  
...  

Introduction. Pseudomonas aeruginosais the most frequently isolated organism as it acts as the opportunistic pathogen and can cause infections in immunosuppressed patients. The production of different types of beta-lactamases renders this organism resistant to many commonly used antimicrobials. Therefore, the aim of this study was to document the antibiotic resistance rate inPseudomonas aeruginosaisolated from different clinical specimens.Methods. Pseudomonas aeruginosarecovered was identified by standard microbiological methods. Antibiotic susceptibility testing was performed by modified Kirby-Bauer disc diffusion method following Clinical and Laboratory Standard Institute (CLSI) guidelines and all the suspected isolates were tested for the production of ESBLs, MBLs, and AmpC.Results.Out of total (178) isolates, 83.1% were recovered from the inpatient department (IPD). Majority of the isolates mediated resistance towards the beta-lactam antibiotics, while nearly half of the isolates were resistant to ciprofloxacin. Most of the aminoglycosides used showed resistance rate up to 75% but amikacin proved to be better option. No resistance to polymyxin was observed. ESBLs, MBLs, and AmpC mediated resistance was seen in 33.1%, 30.9%, and 15.7% isolates, respectively.Conclusions. Antibiotic resistance rate and beta-lactamase mediated resistance were high. Thus, regular surveillance of drug resistance is of utmost importance.


Author(s):  
Kavi Aniis ◽  
Rajamanikandan Kcp ◽  
Arvind Prasanth D

<p>ABSTRACT<br />Objective: Beta-lactams are the group of antibiotics that contain a ring called as “beta-lactam ring,” which is responsible for the antibacterial activity.<br />The presence of resistance among Gram-negative organisms is due to the production of beta-lactamases enzymes that hydrolysis the beta-lactam ring<br />thereby conferring resistance to the organism. This study is undertaken to determine the prevalence of extended-spectrum beta-lactamase (ESBL)<br />producing Gram-negative organism from clinical samples.<br />Methods: A total of 112 clinical samples were taken for this study. The combined disc synergistic test (CDST) was used for the phenotypic detection<br />of ESBL producers from the clinical samples. The genotypic identification of ESBL producers was carried out by alkaline lysis method by isolation of<br />plasmid DNA.<br />Result: A total of 87 bacterial isolates were isolated and identified. Among them, Klebsiella (41%) was the predominant organism followed by<br />Escherichia coli (33%), Proteus (10%), Pseudomonas (10%), and Serratia (6%). Among the various bacterial isolates, Klebsiella showed a higher<br />percentage of resistance. The CDST showed that 8 isolates of Klebsiella, 3 isolates of E. coli, and 1 isolate of Pseudomonas were found to be ESBL<br />producers. The genotypic confirmation showed that the two bacterial isolates, namely, Klebsiella and E. coli were found to possess temoniera (TEM)<br />gene which was the 400-500 bp conferring resistance to the antibiotics.<br />Conclusion: The results of this study suggest that early detection of ESBL producing Gram-negative organism is a very important step in planning the<br />therapy of patient in Hospitals. CDST continues to be a good indicator in the detection of ESBL producers.<br />Keywords: Beta-lactamases, Gram-negative bacilli, Extended-spectrum beta-lactamase, Resistance, Combined disc synergistic test.</p><p> </p>


2010 ◽  
Vol 4 (04) ◽  
pp. 239-242 ◽  
Author(s):  
Supriya Upadhyay ◽  
Malay Ranjan Sen ◽  
Amitabha Bhattacharjee

Introduction: Infections caused by Pseudomonas aeruginosa are difficult to treat as the majority of isolates exhibit varying degrees of beta-lactamase mediated resistance to most of the beta-lactam antibiotics. It is also not unusual to find a single isolate that expresses multiple β-lactamase enzymes, further complicating the treatment options. Thus the present study was designed to investigate the coexistence of different beta-lactamase enzymes in clinical isolates of P. aeruginosa. Methodology: A total of 202 clinical isolates of P. aeruginosa were tested for the presence of AmpC beta-lactamase, extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) enzyme. Detection of AmpC beta-lactamase was performed by disk antagonism test and a modified three-dimensional method, whereas detection of ESBL was done by the combined disk diffusion method per Clinical and Laboratory Standards Institute (CLSI) guidelines and MBL were detected by the Imipenem EDTA disk potentiation test. Results: A total of 120 (59.4%) isolates were confirmed to be positive for AmpC beta-lactamase. Among them, 14 strains (7%) were inducible AmpC producers. Co-production of AmpC along with extended spectrum beta-lactamase and metallo beta-lactamase was reported in 3.3% and 46.6% isolates respectively. Conclusion: The study emphasizes the high prevalence of multidrug resistant P. aeruginosa producing beta-lactamase enzymes of diverse mechanisms. Thus proper antibiotic policy and measures to restrict the indiscriminative use of cephalosporins and carbapenems should be taken to minimize the emergence of this multiple beta-lactamase producing pathogens.


Sign in / Sign up

Export Citation Format

Share Document