Influence of Contrast Material Temperature on Patient Comfort and Image Quality in Computed Tomography of the Abdomen

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Bibi Martens ◽  
Joachim E. Wildberger ◽  
Sander M.J. Van Kuijk ◽  
Judith De Vos-Geelen ◽  
Cécile R.L.P.N. Jeukens ◽  
...  
2017 ◽  
pp. 118-129
Author(s):  
I. A. Kondrashov ◽  
V. Mandal

Iodine containing contrast media are used much frequently now-a-days for computed tomography examinations in children. The group of non-ionic monomers occupies a special place among modern contrast agents. Low osmolarity and viscosity, electrical neutrality and the highest iodine content of these contrast materials provide the best diagnostic efficacy with minimum risk of adverse reactions. However, characteristic anatomic and physiological aspects of a growing child’s body require additional attention and care during diagnostic procedures with use of such contrast agents. This article presents concise literature review of recent years highlighting practical aspects of nonionic lowosmolar iodinated contrast material use for computed tomography assisted diagnostic examinations in child population.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
P Poskaite ◽  
M Pamminger ◽  
C Kranewitter ◽  
C Kremser ◽  
M Reindl ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background The natural history of thoracic aortic aneurysm (TAA) is one of progressive expansion. Asymptomatic patients who do not meet criteria for repair require conservative management including ongoing aneurysm surveillance, mostly carried out by contrast-enhanced computed tomography angiography (CTA). Purpose To prospectively compare image quality and reliability of a prototype non-contrast, self-navigated 3D whole-heart magnetic resonance angiography (MRA) with contrast-enhanced computed tomography angiography (CTA) for sizing of thoracic aortic aneurysm (TAA). Methods Self-navigated 3D whole-heart 1.5 T MRA was performed in 20 patients (aged 67 ± 8.6 years, 75% male) for sizing of TAA; a subgroup of 18 (90%) patients underwent additional contrast-enhanced CTA on the same day. Subjective image quality was scored according to a 4-point Likert scale and ratings between observers were compared by Cohen’s Kappa statistics. Continuous MRA and CTA measurements were analyzed with regression and Bland-Altman analysis. Results Overall subjective image quality as rated by two observers was 1 [interquartile range (IQR) 1-2] for self-navigated MRA and 1.5 [IQR 1-2] for CTA (p = 0.717). For MRA a perfect inter-observer agreement was found for presence of artefacts and subjective image sharpness (κ=1). Subjective signal inhomogeneity correlated highly with objectively quantified inhomogeneity of the blood pool signal (r = 0.78-0.824, all p <0.0001). Maximum diameters of TAA as measured by self-navigated MRA and CTA showed excellent correlation (r = 0.997, p < 0.0001) without significant inter-method bias (bias -0.0278, lower and upper limit of agreement -0.74 and 0.68, p = 0.749). Inter- and intraobserver correlation of aortic aneurysm as measured by MRA was excellent (r = 0.963 and 0.967, respectively) without significant bias (all p ≤ 0.05). Conclusion Self-navigated 3D whole-heart MRA enables reliable contrast- and radiation free aortic dilation surveillance without significant difference to standardized CTA while providing predictable acquisition time and by offering excellent image quality. Abstract Figure.


2019 ◽  
Vol 26 (2) ◽  
pp. 164-169
Author(s):  
Naci Kocer ◽  
Sedat G Kandemirli ◽  
Daniel Ruijters ◽  
Michalis Mantatzis ◽  
Osman Kizilkilic ◽  
...  

Background Design of flow-diverter stents for flexibility, tractability, and low profile limits their radiopacity on conventional digital subtraction angiography. Cone-beam computed tomography (CBCT) offers higher spatial resolution for the evaluation of flow-diverter stents. However, CBCT requires optimal dilution and timing of contrast medium for simultaneous visualization of the stent, arterial lumen, and vessel wall. There are only limited data on the effects of different contrast dilutions on CBCT image quality in neurointerventional applications. Materials and methods In our institution, intra-arterial CBCTs were acquired during stent deployment and at follow-ups with 10% diluted contrast. We had recently started acquiring intra-arterial CBCTs with non-diluted contrast. Retrospective analysis of our flow-diverter data identified eight cases with different aneurysm locations who had intra-arterial CBCT with 10% diluted contrast immediately after flow-diverter stent deployment and with non-diluted contrast technique during follow-ups. For each case, the image quality between diluted and non-diluted contrast techniques was compared qualitatively by assessing stent visualization and quantitatively by plotting gray-scale intensity values along the vessel lumen. Results In two sets of CBCT images per each case, there was no substantial difference between diluted and non-diluted CBTC techniques for the evaluation of stent architecture and lumen opacification. Gray-scale intensity values perpendicular to the lumen revealed similar intensity values along the neighboring parenchyma, vessel wall, and lumen for the two different contrast techniques. Conclusion Intra-arterial CBCT angiography can be performed without contrast dilution and still achieve adequate image quality in certain cerebral aneurysms treated with flow diverter. The non-diluted contrast technique avoids the time loss during preparation of diluted contrast and installation of diluted contrast to the injector in angiography suites with a single power injector.


2010 ◽  
Vol 25 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Yuji Nakamoto ◽  
Munenobu Nogami ◽  
Ryo Sugihara ◽  
Kazuro Sugimura ◽  
Michio Senda ◽  
...  

2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Juan C. Ramirez-Giraldo ◽  
Matthew Fuld ◽  
Katharine Grant ◽  
Andrew N. Primak ◽  
Thomas Flohr

2020 ◽  
Vol 6 (3) ◽  
pp. 28-31
Author(s):  
Marcel Köhler ◽  
Elmer Jeto Gomes Ataide ◽  
Jens Ziegle ◽  
Axel Boese ◽  
Michael Friebe

AbstractFor assessing clinically relevant structures in the neck area, especially the thyroid, it has been shown that 3D or tomographic ultrasound (3D US or tUS) is able to outperform standard 2D ultrasound [1] and computed tomography [2] for certain diagnostic procedures. However, when using a freehand and unassisted scanning method to acquire a 3D US volume data set in this area overlapping image slices, a variation of the probe angulation or differences in training might lead to unusable scanning results. Based on previous works [3] [4] we propose the design - with subsequent testing - of an assistive device that is able to aid physicians during the tUS scanning process on the neck. To validate the feasibility and efficacy we compared the image quality of both freehand and assisted scanning.


Sign in / Sign up

Export Citation Format

Share Document