scholarly journals Novel Assistive Device for Tomographic Ultrasound Neck Imaging vs. Freehand

2020 ◽  
Vol 6 (3) ◽  
pp. 28-31
Author(s):  
Marcel Köhler ◽  
Elmer Jeto Gomes Ataide ◽  
Jens Ziegle ◽  
Axel Boese ◽  
Michael Friebe

AbstractFor assessing clinically relevant structures in the neck area, especially the thyroid, it has been shown that 3D or tomographic ultrasound (3D US or tUS) is able to outperform standard 2D ultrasound [1] and computed tomography [2] for certain diagnostic procedures. However, when using a freehand and unassisted scanning method to acquire a 3D US volume data set in this area overlapping image slices, a variation of the probe angulation or differences in training might lead to unusable scanning results. Based on previous works [3] [4] we propose the design - with subsequent testing - of an assistive device that is able to aid physicians during the tUS scanning process on the neck. To validate the feasibility and efficacy we compared the image quality of both freehand and assisted scanning.

2013 ◽  
Vol 30 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Frederico Sampaio Neves ◽  
Thaís de Camargo Souza ◽  
Sérgio Lins de-Azevedo-Vaz ◽  
Paulo Sérgio Flores Campos ◽  
Frab Norberto Bóscolo

2018 ◽  
Vol 24 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Yukiko Enomoto ◽  
Keita Yamauchi ◽  
Takahiko Asano ◽  
Katharina Otani ◽  
Toru Iwama

Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p < 0.001). Additional clinical findings were seen on CBCT images of 70.4% of patients after MAR correction. Conclusion MAR software improved image quality of CBCT images degraded by metal artifacts.


Author(s):  
Yang-Ting Hsu ◽  
Jo-Chi Jao

Radiologic technologists face various types of patients during multi-detector computed tomography (CT) examinations. In emergency departments, it is common to have patients who cannot follow instructions for the examinations. The asymmetric axial view of the head CT might affect the correctness of the clinician’s diagnosis. This study aimed to assess the impact of head positioning on the image quality of head CT using two phantoms. All scans were performed on a 16-slice CT scanner. In the control group, the tilted angle of the phantoms was 0[Formula: see text], and no multiplanar reconstruction (MPR) was performed. In the experimental groups, the tilted angles of the phantoms were 5[Formula: see text], 10[Formula: see text] and 15[Formula: see text], respectively, and MPR was performed afterwards. The results showed that if the head was tilted during the head CT examinations, image asymmetry and artifacts appeared without MPR. After MPR, one phantom showed that there were significant differences and the other phantom showed no significant differences quantitatively in image symmetry and artifacts between experimental groups and the control group, while both phantoms showed no significant differences qualitatively in image symmetry and artifacts between experimental groups and the control group. Although MPR can correct the image asymmetry and artifacts caused by tilted head positioning to some extent, it consumes time. Therefore, technologists should position the head as exactly as possible when performing head CT examinations.


2007 ◽  
Vol 34 (6Part23) ◽  
pp. 2634-2634 ◽  
Author(s):  
J Alspaugh ◽  
E Christodoulou ◽  
M Goodsitt ◽  
J Stayman

Sign in / Sign up

Export Citation Format

Share Document