scholarly journals The Significance of Non–T-Cell Pathways in Graft Rejection: Implications for Transplant Tolerance

2010 ◽  
Vol 90 (10) ◽  
pp. 1043-1047 ◽  
Author(s):  
Xian Chang Li
Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 827-835 ◽  
Author(s):  
Dela Golshayan ◽  
Shuiping Jiang ◽  
Julia Tsang ◽  
Marina I. Garin ◽  
Christian Mottet ◽  
...  

Abstract CD4+CD25+ regulatory T (Treg) cells play a critical role in the induction and maintenance of peripheral immune tolerance. In experimental transplantation models in which tolerance was induced, donor-specific Treg cells could be identified that were capable of transferring the tolerant state to naive animals. Furthermore, these cells appeared to have indirect allospecificity for donor antigens. Here we show that in vivo alloresponses can be regulated by donor alloantigen-specific Treg cells selected and expanded in vitro. Using autologous dendritic cells pulsed with an allopeptide from H2-Kb, we generated and expanded T-cell lines from purified Treg cells of CBA mice (H2k). Compared with fresh Treg cells, the cell lines maintained their characteristic phenotype, suppressive function, and homing capacities in vivo. When cotransferred with naive CD4+CD25− effector T cells after thymectomy and T-cell depletion in CBA mice that received CBK (H2k+Kb) skin grafts, the expanded Treg cells preferentially accumulated in the graft-draining lymph nodes and within the graft while preventing CBK but not third-party B10.A (H2k+Dd) skin graft rejection. In wild-type CBA, these donor-specific Treg cells significantly delayed CBK skin graft rejection without any other immunosuppression. Taken together, these data suggest that in vitro–generated tailored Treg cells could be considered a therapeutic tool to promote donor-specific transplant tolerance.


1989 ◽  
Vol 8 (2) ◽  
pp. 149-164 ◽  
Author(s):  
Hugh Auchincloss ◽  
Theodore Mayer ◽  
Rafik Ghobrial ◽  
Henry J. Winn

1984 ◽  
Vol 159 (1) ◽  
pp. 57-67 ◽  
Author(s):  
L LeFrancois ◽  
M J Bevan

We have investigated which T cell subclass defined by cytolysis with monoclonal anti-Lyt-1.2 and anti-Lyt-2.2 antibodies is required to adoptively transfer the ability to reject skin grafts. B6.Thy-1.1 spleen cells immune to graft antigens were fractionated with antibody plus C' and transferred to adult thymectomized, irradiated, bone marrow-reconstituted (ATXBM) B6.Thy-1.2 hosts that were simultaneously grafted with BALB.B skin. We found that when the ATXBM hosts were used 6 wk after irradiation and marrow reconstitution, both Lyt-1-depleted and Lyt-2-depleted immune spleen cells could transfer the ability to promptly reject skin grafts. However, such ATXBM recipients of Lyt-2-depleted cells that had rejected skin grafts were found to contain graft-specific CTL that were largely of host (B6.Thy-1.2) origin. When ATXBM hosts were used for the experiment 1 wk after irradiation and marrow reconstitution, no host-derived graft-specific CTL could be detected. However, graft rejection occurred in recipients of anti-Lyt-1- or anti-Lyt-2 plus C'-treated immune cells and specific CTL were generated from spleen cells of both groups. Thus, in the absence of a host-derived response, adoptively transferred immune Lyt-2+ cells, either resistant to, or that escaped from, antibody plus C' treatment, are able to expand in response to the antigenic stimulus provided by the graft. A more complete elimination of specific T cell subclasses is therefore needed to assess the relative contribution of a particular subset to the graft rejection process.


2004 ◽  
Vol 77 (4) ◽  
pp. 580-586 ◽  
Author(s):  
Rachel A. DeFina ◽  
Yurong Liang ◽  
Hongzhen He ◽  
Kathleen J. Haley ◽  
Kenneth Christopher ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4743-4748 ◽  
Author(s):  
Nada Jabado ◽  
Elizabeth R. de Graeff-Meeder ◽  
Marina Cavazzana-Calvo ◽  
Elie Haddad ◽  
Françoise Le Deist ◽  
...  

Abstract Familial hemophagocytic lymphohistiocytosis (FHL) is a rare genetic disorder associated with the onset early in life of overwhelming activation of T lymphocytes and macrophages invariably leading to death. Allogeneic bone marrow transplantation (BMT) from an HLA-identical related donor is the treatment of choice in patients with this disease. However, fewer than 20% of patients have a disease-free HLA-identical sibling. BMT from HLA-nonidentical related donors has previously met with poor results, with graft rejection a major obstacle in all cases. We describe BMTs from HLA-nonidentical related donors (n = 13) and from a matched unrelated donor (n = 1) performed in two centers in 14 consecutive cases of FHL. Remission of disease was achieved before BMT in 10 patients. Marrow was T-cell–depleted to minimize graft-versus-host disease (GVHD). Antiadhesion antibodies specific for the α chain of the leukocyte function–associated antigen-1 (LFA-1, CD11a) and the CD2 molecules were infused pre-BMT and post-BMT to help prevent graft rejection, in addition to a conditioning regimen of busulfan (BU), cyclophosphamide (CP), and etoposide (VP16) or antithymocyte globulin (ATG). Sustained engraftment was obtained in 11 of 17 transplants (3 patients had 2 transplants) and disease-free survival in 9 patients with a follow-up period of 8 to 69 months (mean, 33). Acute GVHD greater than stage I was not observed, and 1 patient had mild cutaneous chronic GVHD that resolved. Toxicity due to the BMT procedure was low. Results obtained using this protocol are promising in terms of engraftment and event-free survival within the limitations of the small sample. We conclude that an immunologic approach in terms of drugs used to obtain disease remission and a conditioning regimen that includes antiadhesion molecules in T-cell–depleted BMT from HLA genetically nonidentical donors is an alternative treatment that warrants further study in FHL patients who lack a suitable HLA genetically identical donor.


2020 ◽  
Vol 21 (9) ◽  
pp. 3347
Author(s):  
Jose-Ignacio Rodriguez-Barbosa ◽  
Pascal Schneider ◽  
Luis Graca ◽  
Leo Bühler ◽  
Jose-Antonio Perez-Simon ◽  
...  

Regulatory T cells (Tregs) are essential for the maintenance of tolerance to self and non-self through cell-intrinsic and cell-extrinsic mechanisms. Peripheral Tregs survival and clonal expansion largely depend on IL-2 and access to co-stimulatory signals such as CD28. Engagement of tumor necrosis factor receptor (TNFR) superfamily members, in particular TNFR2 and DR3, contribute to promote peripheral Tregs expansion and sustain their survival. This property can be leveraged to enhance tolerance to allogeneic transplants by tipping the balance of Tregs over conventional T cells during the course of immune reconstitution. This is of particular interest in peri-transplant tolerance induction protocols in which T cell depletion is applied to reduce the frequency of alloreactive T cells or in conditioning regimens that allow allogeneic bone marrow transplantation. These conditioning regimens are being implemented to limit long-term side effects of continuous immunosuppression and facilitate the establishment of a state of donor-specific tolerance. Lymphopenia-induced homeostatic proliferation in response to cytoreductive conditioning is a window of opportunity to enhance preferential expansion of Tregs during homeostatic proliferation that can be potentiated by agonist stimulation of TNFR.


Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2177-2181 ◽  
Author(s):  
Paul J. Martin ◽  
Yoshiki Akatsuka ◽  
Michael Hahne ◽  
George Sale

Abstract Donor CD8 cells play a pivotal role in preventing allogeneic marrow graft rejection, possibly by generating cytotoxic effectors needed to eliminate recipient T cells remaining after the pretransplant conditioning regimen or by producing cytokines needed to support the growth and differentiation of hematopoietic stem cells. In the present study, we assessed the role of donor T-cell cytotoxic effector function as a mechanism for eliminating recipient CD8 cells that cause marrow graft rejection in mice. The ability to prevent rejection was minimally affected by the presence of a defect in Fas ligand binding or by the absence of granzyme B but was severely affected by the absence of perforin. Doubly mutant perforin-deficient, Fas ligand-defective CD8 cells were completely unable to prevent rejection. Our results indicate first that recipient CD8 effectors responsible for causing marrow graft rejection are sensitive to cytotoxicity mediated by both perforin- and Fas-ligand-dependent mechanisms, and second that donor T cells must have at least one functional cytotoxic mechanism to prevent allogeneic marrow graft rejection. © 1998 by The American Society of Hematology.


Blood ◽  
1992 ◽  
Vol 79 (6) ◽  
pp. 1636-1642 ◽  
Author(s):  
BR Blazar ◽  
SL Aukerman ◽  
DA Vallera

Abstract Recombinant macrophage colony-stimulating factor (rM-CSF), which reacts exclusively with cells of monocyte lineage, was evaluated in the murine bone marrow (BM) transplant setting for in vivo effects on recipient survival, hematologic recovery, and engraftment. Two types of fully allogeneic donors were selected based on the expression (BALB/c), or lack of expression (DBA/1), of hybrid hematopoietic histocompatibility (Hh1) antigens. These antigens are established targets for monocyte and/or natural killer (NK) cell-mediated graft rejection. Irradiated C57BL/6 mice were used as recipients for all experiments. Recipients of T-cell-depleted (TCD) BALB/c BM and a 14-day continuous subcutaneous infusion of 16.8 micrograms/d rM-CSF (n = 30) showed a significant decrease in donor cell engraftment as compared with recipients of donor BM administered pumps delivering saline. These mice administered rM-CSF also displayed significantly reduced levels of circulating leukocytes (predominantly lymphocytes) on day 14 posttransplant (compared with saline controls). Neither engraftment effects nor leukocyte effects were observed when C57BL/6 recipients were administered Hh1 nonexpressing TCD DBA/1 BM cells (n = 30), suggesting that the monocyte/macrophage population is important in long-term alloengraftment in certain donor-recipient strain combinations in which donor Hh1 antigens can serve as target antigens for host effector cells, but are not important in strain combinations in which they are not recognized. Circulating tumor necrosis factor alpha (TNF alpha) levels measured at two time periods during rM-CSF infusion were not elevated. Thus, the reduction in alloengraftment is not likely to be directly related to TNF alpha. However, in vivo elimination of NK cells in the BALB/c into C57BL/6 model prevented the impairment of engraftment mediated by rM-CSF. Thus, rM-CSF-mediated inhibition of alloengraftment is contingent on the presence of host NK cells with antidonor reactivity. Survival was unaffected when rM-CSF was administered in either allogeneic BM transplant model, but was significantly reduced when rM-CSF was administered to C57BL/6 recipients of syngeneic BM transplants. These data are the first analyzing the effects of rM-CSF in murine allogeneic BM transplantation and extend our previous studies using the BALB/c into C57BL/6 model in which in vivo infusions of recombinant granulocyte-macrophage CSF, but not recombinant granulocyte-CSF, lead to decreases in alloengraftment. These data show that rM-CSF-induced stimulation of monocytes may increase BM graft rejection in instances in which NK cells are involved in the rejection process. These data may have future clinical implications for the use of rM-CSF in allogeneic BM transplantation.


Sign in / Sign up

Export Citation Format

Share Document