scholarly journals Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults

Neuroreport ◽  
2013 ◽  
Vol 24 (15) ◽  
pp. 866-871 ◽  
Author(s):  
Kristina L. McFadden ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson ◽  
Jamie L. Bechtell ◽  
Jason R. Tregellas
2014 ◽  
Vol 45 (01) ◽  
Author(s):  
G Mingoia ◽  
K Langbein ◽  
M Dietzek ◽  
G Wagner ◽  
S Smesny ◽  
...  

2020 ◽  
Author(s):  
Steve Mehrkanoon

AbstractSynchronous oscillations of neuronal populations support resting-state cortical activity. Recent studies indicate that resting-state functional connectivity is not static, but exhibits complex dynamics. The mechanisms underlying the complex dynamics of cortical activity have not been well characterised. Here, we directly apply singular value decomposition (SVD) in source-reconstructed electroencephalography (EEG) in order to characterise the dynamics of spatiotemporal patterns of resting-state functional connectivity. We found that changes in resting-state functional connectivity were associated with distinct complex topological features, “Rich-Club organisation”, of the default mode network, salience network, and motor network. Rich-club topology of the salience network revealed greater functional connectivity between ventrolateral prefrontal cortex and anterior insula, whereas Rich-club topologies of the default mode networks revealed bilateral functional connectivity between fronto-parietal and posterior cortices. Spectral analysis of the dynamics underlying Rich-club organisations of these source-space network patterns revealed that resting-state cortical activity exhibit distinct dynamical regimes whose intrinsic expressions contain fast oscillations in the alpha-beta band and with the envelope-signal in the timescale of < 0.1 Hz. Our findings thus demonstrated that multivariate eigen-decomposition of source-reconstructed EEG is a reliable computational technique to explore how dynamics of spatiotemporal features of the resting-state cortical activity occur that oscillate at distinct frequencies.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Ying Liang ◽  
Zhenzhen Li ◽  
Jing Wei ◽  
Chunlin Li ◽  
Xu Zhang ◽  
...  

We applied resting-state functional magnetic resonance imaging (fMRI) to examine the Apolipoprotein E (ApoE) ε4 allele effects on functional connectivity of the default mode network (DMN) and the salience network (SN). Considering the frequency specific effects of functional connectivity, we decomposed the brain network time courses into two bands: 0.01–0.027 Hz and 0.027–0.08 Hz. All scans were acquired by the Alzheimer’s Disease Neuroscience Initiative (ADNI). Thirty-two nondemented subjects were divided into two groups based on the presence (n=16) or absence (n=16) of the ApoE ε4 allele. We explored the frequency specific effects of ApoE ε4 allele on the default mode network (DMN) and the salience network (SN) functional connectivity. Compared to ε4 noncarriers, the DMN functional connectivity of ε4 carriers was significantly decreased while the SN functional connectivity of ε4 carriers was significantly increased. Many functional connectivities showed significant differences at the lower frequency band of 0.01–0.027 Hz or the higher frequency band of 0.027–0.08 Hz instead of the typical range of 0.01–0.08 Hz. The results indicated a frequency dependent effect of resting-state signals when investigating RSNs functional connectivity.


2019 ◽  
Vol 50 (6) ◽  
pp. 404-412 ◽  
Author(s):  
Berrie Gerrits ◽  
Madelon A. Vollebregt ◽  
Sebastian Olbrich ◽  
Hanneke van Dijk ◽  
Donna Palmer ◽  
...  

Studies have shown that specific networks (default mode network [DMN] and task positive network [TPN]) activate in an anticorrelated manner when sustaining attention. Related EEG studies are scarce and often lack behavioral validation. We performed independent component analysis (ICA) across different frequencies (source-level), using eLORETA-ICA, to extract brain-network activity during resting-state and sustained attention. We applied ICA to the voxel domain, similar to functional magnetic resonance imaging methods of analyses. The obtained components were contrasted and correlated to attentional performance (omission errors) in a large sample of healthy subjects (N = 1397). We identified one component that robustly correlated with inattention and reflected an anticorrelation of delta activity in the anterior cingulate and precuneus, and delta and theta activity in the medial prefrontal cortex and with alpha and gamma activity in medial frontal regions. We then compared this component between optimal and suboptimal attentional performers. For the latter group, we observed a greater change in component loading between resting-state and sustained attention than for the optimal performers. Following the National Institute of Mental Health Research Domain Criteria (RDoC) approach, we prospectively replicated and validated these findings in subjects with attention deficit/hyperactivity disorder. Our results provide further support for the “default mode interference hypothesis.”


2014 ◽  
Author(s):  
Xin Di ◽  
Bharat B. Biswal

The two major brain networks, i.e. the default mode network (DMN) and the task positive network, typically reveal negative and variable connectivity in resting-state. In the present study, we examined whether the connectivity between the DMN and different components of the task positive network were modulated by other brain regions by using physiophysiological interaction (PPI) on resting-state functional magnetic resonance imaging data. Spatial independent component analysis was first conducted to identify components that represented networks of interest, including the anterior and posterior DMNs, salience, dorsal attention, left and right executive networks. PPI analysis was conducted between pairs of these networks to identify networks or regions that showed modulatory interactions with the two networks. Both network-wise and voxel-wise analyses revealed reciprocal positive modulatory interactions between the DMN, salience, and executive networks. Together with the anatomical properties of the salience network regions, the results suggest that the salience network may modulate the relationship between the DMN and executive networks. In addition, voxel-wise analysis demonstrated that the basal ganglia and thalamus positively interacted with the salience network and the dorsal attention network, and negatively interacted with the salience network and the DMN. The results demonstrated complex modulatory interactions among the DMNs and task positive networks in resting-state, and suggested that communications between these networks may be modulated by some critical brain structures such as the salience network, basal ganglia, and thalamus.


Author(s):  
Xin Di ◽  
Bharat B. Biswal

The two major brain networks, i.e. the default mode network (DMN) and the task positive network, typically reveal negative and variable connectivity in resting-state. In the present study, we examined whether the connectivity between the DMN and different components of the task positive network were modulated by other brain regions by using physiophysiological interaction (PPI) on resting-state functional magnetic resonance imaging data. Spatial independent component analysis was first conducted to identify components that represented networks of interest, including the anterior and posterior DMNs, salience, dorsal attention, left and right executive networks. PPI analysis was conducted between pairs of these networks to identify networks or regions that showed modulatory interactions with the two networks. Both network-wise and voxel-wise analyses revealed reciprocal positive modulatory interactions between the DMN, salience, and executive networks. Together with the anatomical properties of the salience network regions, the results suggest that the salience network may modulate the relationship between the DMN and executive networks. In addition, voxel-wise analysis demonstrated that the basal ganglia and thalamus positively interacted with the salience network and the dorsal attention network, and negatively interacted with the salience network and the DMN. The results demonstrated complex modulatory interactions among the DMNs and task positive networks in resting-state, and suggested that communications between these networks may be modulated by some critical brain structures such as the salience network, basal ganglia, and thalamus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jaeun Ahn ◽  
Deokjong Lee ◽  
Kee Namkoong ◽  
Young-Chul Jung

Smartphones provide convenience in everyday life. Smartphones, however, can elicit adverse effects when used excessively. The purpose of this study was to examine the underlying neurobiological alterations that arise from problematic smartphone use. We performed resting state seed-based functional connectivity (FC) analysis of 44 problematic smartphone users and 54 healthy controls. This analysis assessed the salience, central executive, default mode, and affective networks. Compared to controls, problematic smartphone users showed enhanced FC within the salience network and between the salience and default mode network. Moreover, we observed decreased FC between the salience and central executive network in problematic smartphone users, compared to controls. These results imply that problematic smartphone use is associated with aberrant FC in key brain networks. Our results suggest that changes in FC of key networks centered around the salience network might be associated with problematic smartphone use.


Sign in / Sign up

Export Citation Format

Share Document