scholarly journals Dogs' looking times and pupil dilation response reveal expectations about contact causality

2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Christoph J. Völter ◽  
Ludwig Huber

Contact causality is one of the fundamental principles allowing us to make sense of our physical environment. From an early age, humans perceive spatio-temporally contiguous launching events as causal. Surprisingly little is known about causal perception in non-human animals, particularly outside the primate order. Violation-of-expectation paradigms in combination with eye-tracking and pupillometry have been used to study physical expectations in human infants. In the current study, we establish this approach for dogs ( Canis familiaris ). We presented dogs with realistic three-dimensional animations of launching events with contact (regular launching event) or without contact between the involved objects. In both conditions, the objects moved with the same timing and kinematic properties. The dogs tracked the object movements closely throughout the study but their pupils were larger in the no-contact condition and they looked longer at the object initiating the launch after the no-contact event compared to the contact event. We conclude that dogs have implicit expectations about contact causality.

Author(s):  
Seok Lee ◽  
Juyong Park ◽  
Dongkyung Nam

In this article, the authors present an image processing method to reduce three-dimensional (3D) crosstalk for eye-tracking-based 3D display. Specifically, they considered 3D pixel crosstalk and offset crosstalk and applied different approaches based on its characteristics. For 3D pixel crosstalk which depends on the viewer’s relative location, they proposed output pixel value weighting scheme based on viewer’s eye position, and for offset crosstalk they subtracted luminance of crosstalk components according to the measured display crosstalk level in advance. By simulations and experiments using the 3D display prototypes, the authors evaluated the effectiveness of proposed method.


2021 ◽  
Vol 11 (13) ◽  
pp. 5956
Author(s):  
Elena Parra ◽  
Irene Alice Chicchi Giglioli ◽  
Jestine Philip ◽  
Lucia Amalia Carrasco-Ribelles ◽  
Javier Marín-Morales ◽  
...  

In this article, we introduce three-dimensional Serious Games (3DSGs) under an evidence-centered design (ECD) framework and use an organizational neuroscience-based eye-tracking measure to capture implicit behavioral signals associated with leadership skills. While ECD is a well-established framework used in the design and development of assessments, it has rarely been utilized in organizational research. The study proposes a novel 3DSG combined with organizational neuroscience methods as a promising tool to assess and recognize leadership-related behavioral patterns that manifest during complex and realistic social situations. We offer a research protocol for assessing task- and relationship-oriented leadership skills that uses ECD, eye-tracking measures, and machine learning. Seamlessly embedding biological measures into 3DSGs enables objective assessment methods that are based on machine learning techniques to achieve high ecological validity. We conclude by describing a future research agenda for the combined use of 3DSGs and organizational neuroscience methods for leadership and human resources.


2020 ◽  
Vol 57 (12) ◽  
pp. 1392-1401
Author(s):  
Mark P. Pressler ◽  
Emily L. Geisler ◽  
Rami R. Hallac ◽  
James R. Seaward ◽  
Alex A. Kane

Introduction and Objectives: Surgical treatment for trigonocephaly aims to eliminate a stigmatizing deformity, yet the severity that captures unwanted attention is unknown. Surgeons intervene at different points of severity, eliciting controversy. This study used eye tracking to investigate when deformity is perceived. Material and Methods: Three-dimensional photogrammetric images of a normal child and a child with trigonocephaly were mathematically deformed, in 10% increments, to create a spectrum of 11 images. These images were shown to participants using an eye tracker. Participants’ gaze patterns were analyzed, and participants were asked if each image looked “normal” or “abnormal.” Results: Sixty-six graduate students were recruited. Average dwell time toward pathologic areas of interest (AOIs) increased proportionally, from 0.77 ± 0.33 seconds at 0% deformity to 1.08 ± 0.75 seconds at 100% deformity ( P < .0001). A majority of participants did not agree an image looked “abnormal” until 90% deformity from any angle. Conclusion: Eye tracking can be used as a proxy for attention threshold toward orbitofrontal deformity. The amount of attention toward orbitofrontal AOIs increased proportionally with severity. Participants did not generally agree there was “abnormality” until deformity was severe. This study supports the assertion that surgical intervention may be best reserved for more severe deformity.


2015 ◽  
Vol 22 (5) ◽  
pp. 522-527 ◽  
Author(s):  
Rositsa Bogdanova ◽  
Pierre Boulanger ◽  
Bin Zheng

2021 ◽  
Vol 17 (1) ◽  
pp. 20200478
Author(s):  
Job Aben ◽  
Johannes Signer ◽  
Janne Heiskanen ◽  
Petri Pellikka ◽  
Justin M. J. Travis

Animal spatial behaviour is often presumed to reflect responses to visual cues. However, inference of behaviour in relation to the environment is challenged by the lack of objective methods to identify the information that effectively is available to an animal from a given location. In general, animals are assumed to have unconstrained information on the environment within a detection circle of a certain radius (the perceptual range; PR). However, visual cues are only available up to the first physical obstruction within an animal's PR, making information availability a function of an animal's location within the physical environment (the effective visual perceptual range; EVPR). By using LiDAR data and viewshed analysis, we modelled forest birds' EVPRs at each step along a movement path. We found that the EVPR was on average 0.063% that of an unconstrained PR and, by applying a step-selection analysis, that individuals are 1.55 times more likely to move to a tree within their EVPR than to an equivalent tree outside it. This demonstrates that behavioural choices can be substantially impacted by the characteristics of an individual's EVPR and highlights that inferences made from movement data may be improved by accounting for the EVPR.


2002 ◽  
Vol 34 (4) ◽  
pp. 549-560 ◽  
Author(s):  
A. H. Clarke ◽  
J. Ditterich ◽  
K. Drüen ◽  
U. Schönfeld ◽  
C. Steineke

1978 ◽  
Vol 22 (1) ◽  
pp. 607-610
Author(s):  
Herbert M. Reynolds ◽  
Robert P. Hubbard

Segment axes systems for simulations have been defined by the inertial tensor unique to each simulated body segment. When empirical three-dimensional data are sought that describe either the mass distribution or the kinematic properties of the human body, anatomical frames of reference are needed for the sake of measurement methodology and data comparability. Anatomical axes systems are based on anatomical landmarks that must represent functional and stable features in the skeletal geometry. This presentation will, therefore, discuss the role of anthropometric landmarks used in defining anatomical coordinate axes systems, and results using present preliminary anatomical frames of reference in a kinematic study of the human hip joint in a research program sponsored by the Air Force Office of Scientific Research (Contract #F49620-78-C-0012).


2016 ◽  
Vol 25 (1) ◽  
pp. 013008 ◽  
Author(s):  
Amin Banitalebi-Dehkordi ◽  
Eleni Nasiopoulos ◽  
Mahsa T. Pourazad ◽  
Panos Nasiopoulos

2011 ◽  
Vol 11 (13) ◽  
pp. 27-27 ◽  
Author(s):  
O. Chelnokova ◽  
B. Laeng

Sign in / Sign up

Export Citation Format

Share Document