scholarly journals Flow pattern similarities in the near wake of three bird species suggest a common role for unsteady aerodynamic effects in lift generation

2017 ◽  
Vol 7 (1) ◽  
pp. 20160090 ◽  
Author(s):  
Roi Gurka ◽  
Krishnamoorthy Krishnan ◽  
Hadar Ben-Gida ◽  
Adam J. Kirchhefer ◽  
Gregory A. Kopp ◽  
...  

Analysis of the aerodynamics of flapping wings has yielded a general understanding of how birds generate lift and thrust during flight. However, the role of unsteady aerodynamics in avian flight due to the flapping motion still holds open questions in respect to performance and efficiency. We studied the flight of three distinctive bird species: western sandpiper ( Calidris mauri ), European starling ( Sturnus vulgaris ) and American robin ( Turdus migratorius ) using long-duration, time-resolved particle image velocimetry, to better characterize and advance our understanding of how birds use unsteady flow features to enhance their aerodynamic performances during flapping flight. We show that during transitions between downstroke and upstroke phases of the wing cycle, the near wake-flow structures vary and generate unique sets of vortices. These structures appear as quadruple layers of concentrated vorticity aligned at an angle with respect to the horizon (named ‘double branch’). They occur where the circulation gradient changes sign, which implies that the forces exerted by the flapping wings of birds are modified during the transition phases. The flow patterns are similar in (non-dimensional) size and magnitude for the different birds suggesting that there are common mechanisms operating during flapping flight across species. These flow patterns occur at the same phase where drag reduction of about 5% per cycle and lift enhancement were observed in our prior studies. We propose that these flow structures should be considered in wake flow models that seek to account for the contribution of unsteady flow to lift and drag.

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Wei Zhang ◽  
Hui Yang ◽  
Hua-Shu Dou ◽  
Zuchao Zhu

The present study investigates the two-dimensional flow past an inclined triangular cylinder at Re = 100. Numerical simulation is performed to explore the effect of cylinder inclination on the aerodynamic quantities, unsteady flow patterns, time-averaged flow characteristics, and flow unsteadiness. We also provide the first global linear stability analysis and sensitivity analysis on the targeted physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of cylinder inclination on the characteristic quantities and unsteady flow patterns, with emphasis on the flow unsteadiness and instability. Numerical results reveal that the flow unsteadiness is generally more pronounced for the base-facing-like cylinders (α → 60 deg) where separation occurs at the front corners. The inclined cylinder reduces the velocity deficiency in the near-wake, and the reduction in far-wake is the most notable for the α = 30 deg cylinder. The transverse distributions of several quantities are shifted toward the negative y-direction, such as the maximum velocity deficiency and maximum/minimum velocity fluctuation. Finally, the global stability and sensitivity analysis show that the spatial structures of perturbed velocities are quite similar for α ≤ 30 deg and the temporal growth rate of perturbation is sensitive to the near-wake flow, while for α ≥ 40 deg there are remarkable transverse expansion and streamwise elongation of the perturbed velocities, and the growth rate is sensitive to the far-wake flow.


2010 ◽  
Author(s):  
Makoto Tsubokura ◽  
Kaito Takahashi ◽  
Tomofuyu Matsuuki ◽  
Takuji Nakashima ◽  
Takeshi Ikenaga ◽  
...  

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
R. Ajith Kumar ◽  
K. Arunkumar ◽  
C. M. Hariprasad

In the present study, results of a flow visualization study on the flow around a square cylinder with dissimilar leading edges are presented. The radii of the leading edges of the cylinder “r1” and “r2” are such that the ratio r1/r2 is systematically varied from 0 to 1. The flow structures around the cylinder with different leading edge radii particularly the vortex shedding mode and mechanism are investigated. For studies with stationary as well as oscillated cylinder cases, the results are taken at a Reynolds number value of 2100. For the oscillated case, a special mechanism is made to oscillate the cylinders at a desired amplitude and frequency. That is, the cylinder undergoes forced oscillation in this case. Results indicate that dissimilar leading edges bring notable changes in the near-wake flow structures of a square cylinder. For the stationary cylinder cases, the vortex formation length decreases with increase in the r1/r2 ratio. Flow structures are also found to be influenced by the amplitude ratio (amplitude to body size ratio); the higher the amplitude, the larger the size of vortices shed per cycle of cylinder oscillation. In view of marine structures and building sections with similar geometries, the present results carry considerable practical significance.


Author(s):  
P. Z. Sterzinger ◽  
S. Zerobin ◽  
F. Merli ◽  
L. Wiesinger ◽  
M. Dellacasagrande ◽  
...  

Abstract This two-part paper presents the unsteady flow interactions between an engine-representative high-pressure turbine (HPT) and low-pressure turbine (LPT) stage, connected by a turbine center frame (TCF) duct with non-turning struts. The setup was tested at the high-speed two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology and includes relevant purge and turbine rotor tip leakage flows. Due to the complexity of such a test, the unsteady component interactions in an HPT-TCF-LPT module have not received much attention in the past and require additional analysis to determine new approaches for further performance improvements on the system level. The flow downstream of an HPT is highly unsteady and dominated by statorrotor interactions, which affect the flow behavior through the downstream TCF and LPT. To capture the unsteady flow structures, time-resolved aerodynamic measurements were carried out with a fast-response aerodynamic pressure probe (FRAPP) at three different measurement planes. In this first part of the paper, the time-resolved and phase-averaged flow fields with respect to the HPT and LPT trigger are studied. Since the two rotors are uncorrelated, the applied method allows the identification of the flow structures induced by either of them. Upstream of the LPT stage, the HPT flow structures evolving through the TCF duct dominate the flow fields. Downstream of the LPT stage, the flow is affected by both the HPT and the LPT secondary flow structures. The interactions between the various stator rows and the two rotors are detected by means of time-space plots and modal decomposition. To describe the fluctuations induced by both rotors, particularly the rotor-rotor interaction, the Rotor Synchronic Averaging (RSA) is used to analyze the flow field downstream of the LPT. The second part of the paper decomposes the flow fields to gain additional insight into the rotor-rotor interactions using the Proper Orthogonal Decomposition (POD) and RSA methods. The paper highlights the need to account for the HPT-induced unsteady mechanisms in addition to the LPT flow structures and the interaction of both to arrive at improved LPT designs.


Author(s):  
Hariprasad Chakkalaparambil Many ◽  
Nagella Yashwanth ◽  
Haresh Bhardwaj ◽  
R. Ajith Kumar ◽  
B. H. Lakshmana Gowda

In this paper, results of a flow visualization study on the flow around a square section cylinder with corner chamfering are presented. The corners of the cylinder are chamfered so that the each corner forms a triangle with horizontal (stream-wise) and cross stream (perpendicular to the free stream velocity) dimension ‘b’. Experiments are conducted for b/B0 ratios of 0.05, 0.1, 0.2 and 0.3 where ‘B0’ is the side dimension of the uncut square cylinder. The flow structures, particularly the vortex shedding mode and mechanism around the cylinder with chamfered corners are investigated in order to deduce the effect of corner modifications on the flow. For studies with stationary cylinder (case (a)), the results are taken at Reynolds number values of 1500, 2100 and 2800. For sinusoidally oscillated cylinder case (case (b)), the studies are restricted to Re=2100. To bring out the effect of corner chamfering more clearly, experiments are also conducted with a square cylinder without corner cuts, i.e., with sharp corners. For the case (b), a special mechanism is made to oscillate the cylinders at a desired amplitude and frequency. That is, the cylinder undergoes forced sinusoidal oscillation in case (b). It is found that drag decreases and Strouhal number increases with b/B0 ratio. Quite uniquely, at b/B0=0.2, cross-stream convection of vortices have been observed. Vortex coalescence is observed in almost all cases. Results indicate that corner chamfering brings notable changes in the near-wake flow structures of a square section cylinder. In view of marine structures and building sections with similar geometries, the present results carry considerable practical significance.


Author(s):  
Arunkumar Kumaran Nair ◽  
R. Ajith Kumar ◽  
Hariprasad Chakkalaparambil Many

In the present study, results of a flow visualization study on the flow around a square cylinder with dissimilar leading edges are presented. The radii of the leading edges of the cylinder ‘r1’ and ‘r2’ are such that the ratio r1/ r2 is systematically varied from 0 to 1. The flow structures around the cylinder with different leading edge radii particularly the vortex shedding mode and mechanism are investigated. For studies with stationary as well as oscillated cylinder cases, the results are taken at a Reynolds number value of 2100. For the oscillated case, a special mechanism is made to oscillate the cylinders at a desired amplitude and frequency. That is, the cylinder undergoes forced oscillation in this case. Results indicate that dissimilar leading edges bring notable changes in the near-wake flow structures of a square cylinder. For the stationary cylinder cases, the vortex formation length decreases with increase in the r1/ r2 ratio. Flow structures are also found to be influenced by the amplitude ratio (amplitude to body size ratio); the higher the amplitude, the larger the size of vortices shed per cycle of cylinder oscillation. In view of marine structures and building sections with similar geometries, the present results carry considerable practical significance.


Sign in / Sign up

Export Citation Format

Share Document