scholarly journals The influence of jaw-muscle fibre-type phenotypes on estimating maximum muscle and bite forces in primates

2021 ◽  
Vol 11 (5) ◽  
pp. 20210009
Author(s):  
Megan Holmes ◽  
Andrea B. Taylor

Numerous anthropological studies have been aimed at estimating jaw-adductor muscle forces, which, in turn, are used to estimate bite force. While primate jaw adductors show considerable intra- and intermuscular heterogeneity in fibre types, studies generally model jaw-muscle forces by treating the jaw adductors as either homogeneously slow or homogeneously fast muscles. Here, we provide a novel extension of such studies by integrating fibre architecture, fibre types and fibre-specific tensions to estimate maximum muscle forces in the masseter and temporalis of five anthropoid primates: Sapajus apella ( N = 3), Cercocebus atys ( N = 4), Macaca fascicularis ( N = 3), Gorilla gorilla ( N = 1) and Pan troglodytes ( N = 2). We calculated maximum muscle forces by proportionally adjusting muscle physiological cross-sectional areas by their fibre types and associated specific tensions. Our results show that the jaw adductors of our sample ubiquitously express MHC α-cardiac, which has low specific tension, and hybrid fibres. We find that treating the jaw adductors as either homogeneously slow or fast muscles potentially overestimates average maximum muscle forces by as much as approximately 44%. Including fibre types and their specific tensions is thus likely to improve jaw-muscle and bite force estimates in primates.

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Jonathan M. G. Perry ◽  
Adam Hartstone-Rose ◽  
Rachel L. Logan

We reconstructed the jaw adductor resultant in 34 primate species using new data on muscle physiological cross-sectional area (PCSA) and data on skull landmarks. Based on predictions by Greaves, the resultant should (1) cross the jaw at 30% of its length, (2) lie directly posterior to the last molar, and (3) incline more anteriorly in primates that need not resist large anteriorly-directed forces. We found that the resultant lies significantly posterior to its predicted location, is significantly posterior to the last molar, and is significantly more anteriorly inclined in folivores than in frugivores. Perhaps primates emphasize avoiding temporomandibular joint distraction and/or wide gapes at the expense of bite force. Our exploration of trends in the data revealed that estimated bite force varies with body mass (but not diet) and is significantly greater in strepsirrhines than in anthropoids. This might be related to greater contribution from the balancing-side jaw adductors in anthropoids.


1982 ◽  
Vol 47 (3) ◽  
pp. 417-431 ◽  
Author(s):  
K. S. Bedi ◽  
A. R. Birzgalis ◽  
M. Mahon ◽  
J. L. Smart ◽  
A. C. Wareham

1. Male rats were undernourished either during the geslational and suckling periods or for a period of time immediately following weaning. Some rats were killed at the end of the period of undernutrition; others were nutritionally rehabilitated for lengthy periods of time before examination. Two muscles, the extensor digitorum longus (EDL) and soleus (SOL) were studied from each rat. Histochemically-stained transverse sections of these muscles were used to determine total number of fibres, the fibre cross-sectional areas and the relative frequency of the various fibre types.2. All rats killed immediately following undernutrition showed significant deficit sin body-weight, muscle weight and fibre cross-sectional area compared to age-matched controls.3. Animals undernourished during gestation and suckling and then fed normally for 5 months showed persistent and significant deficits in body-weight, muscle weight and total fibre number. There were also significant deficits in mean fibre cross-sectional area of each fibre type except for red fibres in the EDL. No difference in the volume proportion of connective tissue was found.4. Rats undernourished after weaning and then fed ad lib. for approximately 7 months had normal body-and muscle weights. Their muscles showed no significant differences in total fibre number, relative frequency of the various fibre types, fibre size or volume proportion of connective lissue.5. These results indicate that, although the effects on rat skeletal muscle of a period of undernutrition after weaning can be rectified, undernutrition before weaning causes lasting deficits.


2016 ◽  
Vol 52 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Ran S Sopher ◽  
Andrew A Amis ◽  
D Ceri Davies ◽  
Jonathan RT Jeffers

Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.


2020 ◽  
Vol 4 (2) ◽  

Aim: The aim of this study is to assess Scheimpflug topographic elevation maps in patients with POAG and correlate the results with their perimetric changes. Methods: This was an analytical observational cross-sectional study. The study included 130 eyes of 70 subjects which were divided into 78 eyes of 44 patients diagnosed with POAG and 52 eyes of 26 control subjects. Measurement of IOP, visual field examination in patients with POAG using Humphrey Field Analyzer (2003 Carl Zeiss Meditec), Germany were done. Subjects were scanned using TMS-5 topographer (Topographic Modeling System, version 5. Tomey Corp. Nagoya, Japan) to measure central corneal thickness, mean anterior keratometry, maximum anterior and posterior topographic elevation maps in the central 3, 5, and 7 mm. Results: 78 patients with POAG classified according to visual field deterioration using Hodapp-Anderson-Parrish grading scale into mild glaucoma 33 eyes, moderate glaucoma 19 eyes, severe glaucoma 26 eyes, and 52 eyes control were included in the study. The mean age of the patients with POAG was 57.82 ± 7.78 years; 22 eyes (50%) were male and 22 eyes (50%) were female. The average age of control subjects was 56.62 ± 8.48 years; 12 eyes (46.2%) were male and 14 eyes (53.8%) were female, average CCT was 530.3 ± 23.58 µm, average mean anterior keratometry (MAK) was 42.97 ± 1.42 D, average maximum anterior elevation (MAE) in 3,5 and 7mm zone was 5.31 ± 2.28, 12.10 ± 6.94 and 44.04 ± 21.99 µm respectively and average maximum posterior elevation (MPE) in 3,5 and 7mm zone was 8.46 ± 2.10, 19.90 ± 9.39 and 62.72 ± 28.82 µm respectively in patients with POAG, whereas average CCT was 543.0 ± 31.02µm, average MAK was 43.11 ± 1.73 D, average MAE in 3,5 and 7mm zone was 4.52 ± 1.97, 5.90 ± 2.71 and 27.19 ± 8.55 µm respectively. Conclusion: Evaluation of corneal elevation topography by scheimpflug imaging showed forward shifting of the anterior and posterior corneal surfaces in POAG.


2010 ◽  
Vol 10 (04) ◽  
pp. 643-666 ◽  
Author(s):  
ERIC BERTHONNAUD ◽  
MELISSA MORROW ◽  
GUILLAUME HERZBERG ◽  
KAI-NAN AN ◽  
JOANNES DIMNET

A three-dimensional (3D) geometric model for predicting muscle forces in the shoulder complex is proposed. The model was applied throughout the range of arm elevation in the scapular plan. In vitro testing has been performed on 13 cadaveric shoulders. The objectives were to determine homogeneous values of physiological parameters of shoulder muscles and to locate sites of muscular attachment to any bone of the shoulder complex. Muscular fiber lengths, lengths of contractile element (CE), and muscle volumes were measured, corresponding physiological cross-sectional area (PCSA) were calculated, and force/length muscle relations were found. An in vivo biplanar radiography was performed on five volunteers. The photogrammetric reconstruction of bone axes and landmarks were coupled with a geometric modeling of bones and muscle sites of attachment. Muscular paths were drawn and changes in lengths during movement have been estimated. Directions of muscle forces are the same as that of muscular path at the point of attachment to bone. Magnitudes of muscular forces were found from muscle lengths coupled with force/length relations. Passive forces were directly determined contrary to active muscle forces. A resulting active muscle force is calculated from balancing weight and passive forces at each articular center. Active muscle forces were calculated by distributing the resulting force among active muscles based on the muscular PCSA values.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350022 ◽  
Author(s):  
YUNUS ZIYA ARSLAN ◽  
AZIM JINHA ◽  
MOTOSHI KAYA ◽  
WALTER HERZOG

In this study, we introduced a novel cost function for the prediction of individual muscle forces for a one degree-of-freedom musculoskeletal system. Unlike previous models, the new approach incorporates the instantaneous contractile conditions represented by the force-length and force-velocity relationships and accounts for physiological properties such as fiber type distribution and physiological cross-sectional area (PCSA) in the cost function. Using this cost function, it is possible to predict experimentally observed features of force-sharing among synergistic muscles that cannot be predicted using the classical approaches. Specifically, the new approach allows for predictions of force-sharing loops of agonistic muscles in one degree-of-freedom systems and for simultaneous increases in force in one muscle and decreases in a corresponding agonist. We concluded that the incorporation of the contractile conditions in the weighting of cost functions provides a natural way to incorporate observed force-sharing features in synergistic muscles that have eluded satisfactory description.


2012 ◽  
Vol 61 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Naoki Kamata ◽  
Sayaka Endo ◽  
Shoei Sugita
Keyword(s):  

1996 ◽  
Vol 8 (3) ◽  
pp. 391 ◽  
Author(s):  
MD Fratacci ◽  
M Levame ◽  
A Rauss ◽  
H Bousbaa ◽  
G Atlan

The changes occurring in the histochemical characteristics of the rat diaphragm during the postnatal period were examined. Fibre-type distribution, fibre oxidative capacity, i.e. succinate-dehydrogenase (SDH) activity, and cross-sectional area were compared in the costal (COS) and crural (CRU) regions, and across their abdominal and thoracic surfaces. The proportions of type I and IIb fibres in both COS and CRU increased with age, while the proportion of type IIa fibres progressively decreased. For COS, fibre distribution was homogeneous over the entire muscle and did not change after 4 weeks. For CRU, it was heterogeneous with a higher proportion of type I fibres on the thoracic surface as from the first week. All fibre types significantly increased in cross-sectional area between 1 and 8 weeks, with no significant differences in COS and CRU. Mean SDH activity did not differ between COS and CRU or across the muscles. Mean SDH activities-were low and identical in all fibre types at birth, and then increased, peaking at the 6th week in type I and IIa fibres. When total muscle fibre oxidative capacity was calculated from an index including fibre-type proportion, cross-sectional area and mean SDH activity, it was significantly higher at 1 than at 8 weeks after birth; this might have functional implications for the newborn.


Sign in / Sign up

Export Citation Format

Share Document