PREDICTION OF MUSCLE FORCES USING STATIC OPTIMIZATION FOR DIFFERENT CONTRACTILE CONDITIONS

2013 ◽  
Vol 13 (03) ◽  
pp. 1350022 ◽  
Author(s):  
YUNUS ZIYA ARSLAN ◽  
AZIM JINHA ◽  
MOTOSHI KAYA ◽  
WALTER HERZOG

In this study, we introduced a novel cost function for the prediction of individual muscle forces for a one degree-of-freedom musculoskeletal system. Unlike previous models, the new approach incorporates the instantaneous contractile conditions represented by the force-length and force-velocity relationships and accounts for physiological properties such as fiber type distribution and physiological cross-sectional area (PCSA) in the cost function. Using this cost function, it is possible to predict experimentally observed features of force-sharing among synergistic muscles that cannot be predicted using the classical approaches. Specifically, the new approach allows for predictions of force-sharing loops of agonistic muscles in one degree-of-freedom systems and for simultaneous increases in force in one muscle and decreases in a corresponding agonist. We concluded that the incorporation of the contractile conditions in the weighting of cost functions provides a natural way to incorporate observed force-sharing features in synergistic muscles that have eluded satisfactory description.

2009 ◽  
Vol 42 (5) ◽  
pp. 657-660 ◽  
Author(s):  
Gudrun Schappacher-Tilp ◽  
Paul Binding ◽  
Elena Braverman ◽  
Walter Herzog

1992 ◽  
Vol 114 (2) ◽  
pp. 267-268 ◽  
Author(s):  
Walter Herzog

The purpose of this study was to analyze the sensitivity of muscle force calculations to changes in muscle input parameters. Force sharing between two synergistic muscles was derived analytically for a one-degree-of-freedom system using three nonlinear optimization approaches. Changes in input parameters that are within normal anatomical variations often caused changes in muscular forces exceeding 100 percent. These results indicate that errors in muscle force calculations may depend as much on inadequate muscle input parameters as they may on the choice of the objective and constraint functions of the optimization approach.


2018 ◽  
Vol 11 (1) ◽  
pp. 429-439 ◽  
Author(s):  
Marcin L. Witek ◽  
Michael J. Garay ◽  
David J. Diner ◽  
Michael A. Bull ◽  
Felix C. Seidel

Abstract. A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, “best estimate” AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and (c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.


2017 ◽  
Author(s):  
Marcin L. Witek ◽  
Michael J. Garay ◽  
David J. Diner ◽  
Michael A. Bull ◽  
Felix C. Seidel

Abstract. A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR’s aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous Version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture, then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of a) the absolute values of the cost functions for each aerosol mixture, b) the widths of the cost function distributions as a function of AOD, and c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on arbitrary thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new Aerosol Retrieval Confidence Index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.


2014 ◽  
Vol 631-632 ◽  
pp. 824-829
Author(s):  
Emmanuel Anania Mwangosi ◽  
Cang Yan ◽  
Naveed Ur Rehman

The paper present new approach for improving the steady-state error performance of Constant Modulus Algorithm (CMA), it is well known that for higher level modulations such as QAM, CMA does not perform well. Several techniques have been proposed in recent years to deal with slow convergence and MSE performance of CMA. Constellation matched error has been seen to offer best performance by providing the cost function with the knowledge of the constellation symbols. New constellation match error function is studied, simulation is performed, it can be witnessed that 4dB improvement stead state error performance.


Author(s):  
Praneet Dutta ◽  
Rashmi Ranjan Das ◽  
Rupali Mathur ◽  
Deepika Rani Sona

This paper deals with the trajectory and path generation of the industrial manipulator. The trajectory is obtained using the equations of motion and also the optimal path planning (OPP) approach under kinodynamic constraints. The optimal control problem is defined for the minimum cost function and to obtain the necessary conditions. Here we have used pontrygain’s minimum principle to obtain the limiting value of joint angle and also  the joint velocity and torque. In this paper we have used the “Two degree of freedom (DOF) manipulator” for analysis and designing the optimal control for multi link and multi degree of freedom manipulator. For analysis purposes,  simulation software has been used to formulate the trajectory and minimize the cost function involved.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


1998 ◽  
Vol 11 (1) ◽  
pp. 381-381
Author(s):  
A.V. Dorodnitsyn

We have considered a stationary outflowing envelope accelerated by the radiative force in arbitrary optical depth case. Introduced approximations provide satisfactory description of the behavior of the matter flux with partially separated radiation at arbitrary optical depths. The obtained systemof differential equations provides a continuous transition of the solution between optically thin and optically thick regions. We analytically derivedapproximate representation of the solution at the vicinity of the sonic point. Using this representation we numerically integrate the system of equations from the critical point to the infinity. Matching the boundary conditions we obtain solutions describing the problem system of differential equations. The theoretical approach advanced in this work could be useful for self-consistent simulations of massive star evolution with mass loss.


Sign in / Sign up

Export Citation Format

Share Document