scholarly journals Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery

2009 ◽  
Vol 7 (suppl_1) ◽  
Author(s):  
Christopher L. Grigsby ◽  
Kam W. Leong

Engineering polymeric gene-delivery vectors to release an intact DNA payload at the optimal time and subcellular compartment remains a formidable challenge. An ideal vector would provide total protection of complexed DNA from degradation prior to releasing it efficiently near or within the nucleus of a target cell. While optimization of polymer properties, such as molecular weight and charge density, has proved largely inadequate in addressing this challenge, applying polymeric carriers that respond to temperature, light, pH and redox environment to trigger a switch from a tight, protective complex to a more relaxed interaction favouring release at the appropriate time and place has shown promise. Currently, a paucity of gene carriers able to satisfy the contrary requirements of adequate DNA protection and efficient release contributes to the slow progression of non-viral gene therapy towards clinical translation. This review highlights the promising carrier designs that may achieve an optimal balance of DNA protection and release. It also discusses the imaging techniques and three-dimensional in vitro models that can help study these two barriers in the non-viral gene transfer process. Ultimately, efficacious non-viral gene therapy will depend on the combination of intelligent material design, innovative imaging techniques and sophisticated in vitro model systems to facilitate the rational design of polymeric gene-delivery vectors.

2003 ◽  
Vol 5 (17) ◽  
pp. 1-18 ◽  
Author(s):  
Susan B. Kesmodel ◽  
Francis R. Spitz

Gene therapy has been applied to the treatment of cancer and metastatic disease for over ten years. Research in this area has utilised multiple gene therapy approaches including targeting tumour suppressor genes and oncogenes, stimulating the immune system, targeted chemotherapy, antiangiogenic strategies, and direct viral oncolysis. In recent years, gene delivery vectors have been developed that selectively target tumour cells through tumour-specific receptors, deletion of certain viral gene sequences, or incorporation of tumour-specific promoter sequences that drive gene expression. Preclinical models have produced promising results, demonstrating significant tumour regression and reduction of metastatic disease. Unfortunately, only limited responses have been observed in clinical trials. The main limitations in treating metastatic disease include poor vector transduction efficiencies and difficulties in targeting remote tumour cells with systemic vector delivery. Currently, various groups are investigating means to improve gene delivery and clinical responses by continuing to modify gene delivery vectors and by concentrating on combination gene therapy and multimodality therapy.


2007 ◽  
Vol 9 (5) ◽  
pp. 403-415 ◽  
Author(s):  
Elena L. Aronovich ◽  
Jason B. Bell ◽  
Lalitha R. Belur ◽  
Roland Gunther ◽  
Brenda Koniar ◽  
...  

Author(s):  
Ilona Uzieliene ◽  
Ursule Kalvaityte ◽  
Eiva Bernotiene ◽  
Ali Mobasheri

Strategies for delivering nucleic acids into damaged and diseased tissues have been divided into two major areas: viral and non-viral gene therapy. In this mini-review article we discuss the application of gene therapy for the treatment of osteoarthritis (OA), one of the most common forms of arthritis. We focus primarily on non-viral gene therapy and cell therapy. We briefly discuss the advantages and disadvantages of viral and non-viral gene therapy and review the nucleic acid transfer systems that have been used for gene delivery into articular chondrocytes in cartilage from the synovial joint. Although viral gene delivery has been more popular due to its reported efficiency, significant effort has gone into enhancing the transfection efficiency of non-viral delivery, making non-viral approaches promising tools for further application in basic, translational and clinical studies on OA. Non-viral gene delivery technologies have the potential to transform the future development of disease-modifying therapeutics for OA and related osteoarticular disorders. However, further research is needed to optimize transfection efficiency, longevity and duration of gene expression.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 977 ◽  
Author(s):  
Maria Ribeiro ◽  
Patricia Carvalho ◽  
Tiago Martins ◽  
Célia Faustino

Biosurfactant compounds have been studied in many applications, including biomedical, food, cosmetic, agriculture, and bioremediation areas, mainly due to their low toxicity, high biodegradability, and multifunctionality. Among biosurfactants, the lipoplexes of lipoaminoacids play a key role in medical and pharmaceutical fields. Lipoaminoacids (LAAs) are amino acid-based surfactants that are obtained from the condensation reaction of natural origin amino acids with fatty acids or fatty acid derivatives. LAA can be produced by biocatalysis as an alternative to chemical synthesis and thus become very attractive from both the biomedical and the environmental perspectives. Gemini LAAs, which are made of two hydrophobic chains and two amino acid head groups per molecule and linked by a spacer at the level of the amino acid residues, are promising candidates as both drug and gene delivery and protein disassembly agents. Gemini LAA usually show lower critical micelle concentration, interact more efficiently with proteins, and are better solubilising agents for hydrophobic drugs when compared to their monomeric counterparts due to their dimeric structure. A clinically relevant human gene therapy vector must overcome or avoid detect and silence foreign or misplaced DNA whilst delivering sustained levels of therapeutic gene product. Many non-viral DNA vectors trigger these defence mechanisms, being subsequently destroyed or rendered silent. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for a successful clinical application, and it one of the main strategic tasks of non-viral gene therapy research.


2003 ◽  
Vol 31 (2) ◽  
pp. 397-406 ◽  
Author(s):  
I.S. Blagbrough ◽  
A.J. Geall ◽  
A.P. Neal

As a part of our continuing studies on ‘Polyamines and their role in human disease’ we are investigating how polyamines, and especially how novel polyamine conjugates, interact with DNA. We are studying how these conjugates interact with circular plasmids in order to produce nanometre-sized particles suitable for transfecting cells. Our considerations of structure--activity relationships (SAR) within naturally occurring and synthetic polyamines have shown the significance of the inter-atomic distances between the basic nitrogen atoms. As these atoms are typically fully protonated under physiological conditions, they exist in equilibrium as polyammonium ions. The covalent addition of a lipid moiety, typically one or two alkyl or alkenyl chains, or a steroid, allows much greater efficiency in DNA condensation and in the cellular transfection achieved. Thus efficient DNA condensation and subsequently drug delivery (i.e. with DNA as the drug) can be brought about using novel polyamine conjugates. Taking further advantage of the functionalization of specific steroids (e.g. cholesterol and certain bile acids), we have designed and prepared novel fluorescent molecular probes as tools to throw light on the problematic steps in non-viral gene delivery which still impede efficient gene therapy. Thus, the current aims of our research are to understand, design and prepare small-molecule lipopolyamines for non-viral gene therapy (NVGT). The rational design and practical preparation of non-symmetrical polyamine carbamates and amides, based on steroid templates of cholesterol and the bile acid lithocholic acid as the lipid moiety, provides fluorescent molecular probes that condense DNA. These novel lipopolyamine conjugates mimic the positive charge distribution found in the triamine spermidine and the tetra-amine spermine alkaloids. After optimizing their SAR, these fluorescent probes will be useful in monitoring gene delivery in NVGT.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 183 ◽  
Author(s):  
Nina Bono ◽  
Federica Ponti ◽  
Diego Mantovani ◽  
Gabriele Candiani

Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4674
Author(s):  
Yu Liu ◽  
Huan-Huan Wan ◽  
Duo-Mei Tian ◽  
Xiao-Jun Xu ◽  
Chang-Long Bi ◽  
...  

Cell-penetrating peptides (CPPs), as non-viral gene delivery vectors, are considered with lower immunogenic response, and safer and higher gene capacity than viral systems. In our previous study, a CPP peptide called RALA (arginine rich) presented desirable transfection efficacy and owns a potential clinic use. It is believed that histidine could enhance the endosome escaping ability of CPPs, yet RALA peptide contains only one histidine in each chain. In order to develop novel superior CPPs, by using RALA as a model, we designed a series of peptides named HALA (increased histidine ratio). Both plasmid DNA (pDNA) and siRNA transfection results on three cell lines revealed that the transfection efficacy is better when histidine replacements were on the C-terminal instead of on the N-terminal, and two histidine replacements are superior to three. By investigating the mechanism of endocytosis of the pDNA nanocomplexes, we discovered that there were multiple pathways that led to the process and caveolae played the main role. During the screening, we discovered a novel peptide-HALA2 of high cellular transfection efficacy, which may act as an exciting gene delivery vector for gene therapy. Our findings also bring new insights on the development of novel robust CPPs.


Sign in / Sign up

Export Citation Format

Share Document