scholarly journals Multidisciplinary fingerprints: forensic reconstruction of an insect reinvasion

2009 ◽  
Vol 7 (45) ◽  
pp. 677-686 ◽  
Author(s):  
Kyung Seok Kim ◽  
Gretchen D. Jones ◽  
John K. Westbrook ◽  
Thomas W. Sappington

An unexpected outbreak of boll weevils, Anthonomus grandis , an insect pest of cotton, across the Southern Rolling Plains (SRP) eradication zone of west-central Texas, USA, was detected soon after passage of Tropical Storm Erin through the Winter Garden district to the south on 16 August 2007. The synchrony and broad geographic distribution of the captured weevils suggest that long-distance dispersal was responsible for the reinvasion. We integrated three types of assessment to reconstruct the geographic origin of the immigrants: (i) DNA fingerprinting; (ii) pollen fingerprinting; and (iii) atmospheric trajectory analysis. We hypothesized the boll weevils originated in the Southern Blacklands zone near Cameron, or in the Winter Garden district near Uvalde, the nearest regions with substantial populations. Genetic tests broadly agree that the immigrants originated southeast of the SRP zone, probably in regions represented by Uvalde or Weslaco. The SRP pollen profile from weevils matched that of Uvalde better than that of Cameron. Wind trajectories supported daily wind-aided dispersal of weevils from the Uvalde region to the SRP from 17 to 24 August, but failed to support migration from the Cameron region. Taken together the forensic evidence strongly implicates the Winter Garden district near Uvalde as the source of reinvading boll weevils.

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 687
Author(s):  
Salman Sakib ◽  
Dawit Ghebreyesus ◽  
Hatim O. Sharif

Tropical Storm Imelda struck the southeast coastal regions of Texas from 17–19 September, 2019, and delivered precipitation above 500 mm over about 6000 km2. The performance of the three IMERG (Early-, Late-, and Final-run) GPM satellite-based precipitation products was evaluated against Stage-IV radar precipitation estimates. Basic and probabilistic statistical metrics, such as CC, RSME, RBIAS, POD, FAR, CSI, and PSS were employed to assess the performance of the IMERG products. The products captured the event adequately, with a fairly high POD value of 0.9. The best product (Early-run) showed an average correlation coefficient of 0.60. The algorithm used to produce the Final-run improved the quality of the data by removing systematic errors that occurred in the near-real-time products. Less than 5 mm RMSE error was experienced in over three-quarters (ranging from 73% to 76%) of the area by all three IMERG products in estimating the Tropical Storm Imelda. The Early-run product showed a much better RBIAS relatively to the Final-run product. The overall performance was poor, as areas with an acceptable range of RBIAS (i.e., between −10% and 10%) in all the three IMERG products were only 16% to 17% of the total area. Overall, the Early-run product was found to be better than Late- and Final-run.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 394
Author(s):  
Carlos A. Antolinez ◽  
Tobias Moyneur ◽  
Xavier Martini ◽  
Monique J. Rivera

Diaphorina citri Kuwayama (Hemiptera: Liviidae), commonly known as Asian citrus psyllid (ACP), is an invasive insect pest and the vector of the bacterium causing Huanglongbing (HLB), a lethal disease of citrus. In the United States, ACP has been established in all citrus-producing zones, all of which have different environmental conditions. The spread of ACP and, more importantly, HLB, has progressed differently depending on the state, with more rapid spread in Florida and Texas than in California. Climatic variations between the regions are likely a strong factor in the difference in the rate of spread. Despite this, it is unknown how the flight capacity of D. citri is influenced by high temperatures (>30 °C) and subsequently, low humidity experienced in California but not in Texas or Florida. In this study, by using a custom-made, temperature-controlled flight mill arena, we assessed the effect of high temperatures on the flight capacity and flight propensity of D. citri under low (20–40%) and high (76–90%) relative humidity conditions. We found that temperature and humidity influence the propensity to engage in short or long-distance flight events. Psyllids exposed to temperatures above 43 °C only performed short flights (˂60 s), and a high relative humidity significantly decrease the proportion of long flights (≥60 s) at 26 and 40 °C. The flight capacity for insects who engaged in short and long flights was significantly affected by temperature but not by humidity. For long flyers, temperature (in the 26–43 °C range) was negatively correlated with distance flown and flight duration. The most favorable temperature for long dispersion was 26 °C, with suboptimal temperatures in the range of 32–37 °C and the least favorable temperatures at 40 and 43 °C. In conclusion, D. citri is able to fly in a broad range of temperatures and efficiently fly in high and low humidity. However, temperatures above 40 °C, similar to those experienced in semi-arid environments like Southern California or Arizona, are detrimental for its flight capacity.


2015 ◽  
Vol 39 (1) ◽  
pp. 290-293 ◽  
Author(s):  
Elizabeth A. Sinclair ◽  
Renae Hovey ◽  
John Statton ◽  
Matthew W. Fraser ◽  
Marion L. Cambridge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document