scholarly journals A unifying framework for quantifying the nature of animal interactions

2014 ◽  
Vol 11 (96) ◽  
pp. 20140333 ◽  
Author(s):  
Jonathan R. Potts ◽  
Karl Mokross ◽  
Mark A. Lewis

Collective phenomena, whereby agent–agent interactions determine spatial patterns, are ubiquitous in the animal kingdom. On the other hand, movement and space use are also greatly influenced by the interactions between animals and their environment. Despite both types of interaction fundamentally influencing animal behaviour, there has hitherto been no unifying framework for the models proposed in both areas. Here, we construct a general method for inferring population-level spatial patterns from underlying individual movement and interaction processes, a key ingredient in building a statistical mechanics for ecological systems. We show that resource selection functions, as well as several examples of collective motion models, arise as special cases of our framework, thus bringing together resource selection analysis and collective animal behaviour into a single theory. In particular, we focus on combining the various mechanistic models of territorial interactions in the literature with step selection functions, by incorporating interactions into the step selection framework and demonstrating how to derive territorial patterns from the resulting models. We demonstrate the efficacy of our model by application to a population of insectivore birds in the Amazon rainforest.

2020 ◽  
Vol 375 (1807) ◽  
pp. 20190378 ◽  
Author(s):  
Josué Manik Nava-Sedeño ◽  
Anja Voß-Böhme ◽  
Haralampos Hatzikirou ◽  
Andreas Deutsch ◽  
Fernando Peruani

Biological processes, such as embryonic development, wound repair and cancer invasion, or bacterial swarming and fruiting body formation, involve collective motion of cells as a coordinated group. Collective cell motion of eukaryotic cells often includes interactions that result in polar alignment of cell velocities, while bacterial patterns typically show features of apolar velocity alignment. For analysing the population-scale effects of these different alignment mechanisms, various on- and off-lattice agent-based models have been introduced. However, discriminating model-specific artefacts from general features of collective cell motion is challenging. In this work, we focus on equivalence criteria at the population level to compare on- and off-lattice models. In particular, we define prototypic off- and on-lattice models of polar and apolar alignment, and show how to obtain an on-lattice from an off-lattice model of velocity alignment. By characterizing the behaviour and dynamical description of collective migration models at the macroscopic level, we suggest the type of phase transitions and possible patterns in the approximative macroscopic partial differential equation descriptions as informative equivalence criteria between on- and off-lattice models. This article is part of the theme issue ‘Multi-scale analysis and modelling of collective migration in biological systems’.


Ecology ◽  
2018 ◽  
Vol 100 (1) ◽  
Author(s):  
Théo Michelot ◽  
Paul G. Blackwell ◽  
Jason Matthiopoulos

2019 ◽  
Vol 374 (1781) ◽  
pp. 20180046 ◽  
Author(s):  
George Wittemyer ◽  
Joseph M. Northrup ◽  
Guillaume Bastille-Rousseau

Wildlife tracking is one of the most frequently employed approaches to monitor and study wildlife populations. To date, the application of tracking data to applied objectives has focused largely on the intensity of use by an animal in a location or the type of habitat. While this has provided valuable insights and advanced spatial wildlife management, such interpretation of tracking data does not capture the complexity of spatio-temporal processes inherent to animal behaviour and represented in the movement path. Here, we discuss current and emerging approaches to estimate the behavioural value of spatial locations using movement data, focusing on the nexus of conservation behaviour and movement ecology that can amplify the application of animal tracking research to contemporary conservation challenges. We highlight the importance of applying behavioural ecological approaches to the analysis of tracking data and discuss the utility of comparative approaches, optimization theory and economic valuation to gain understanding of movement strategies and gauge population-level processes. First, we discuss innovations in the most fundamental movement-based valuation of landscapes, the intensity of use of a location, namely dissecting temporal dynamics in and means by which to weight the intensity of use. We then expand our discussion to three less common currencies for behavioural valuation of landscapes, namely the assessment of the functional (i.e. what an individual is doing at a location), structural (i.e. how a location relates to use of the broader landscape) and fitness (i.e. the return from using a location) value of a location. Strengthening the behavioural theoretical underpinnings of movement ecology research promises to provide a deeper, mechanistic understanding of animal movement that can lead to unprecedented insights into the interaction between landscapes and animal behaviour and advance the application of movement research to conservation challenges. This article is part of the theme issue ‘Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation’.


Polar Biology ◽  
2009 ◽  
Vol 33 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Jerrold L. Belant ◽  
Brad Griffith ◽  
Yingte Zhang ◽  
Erich H. Follmann ◽  
Layne G. Adams

2017 ◽  
Vol 95 (3) ◽  
pp. 203-212 ◽  
Author(s):  
Jared F. Duquette ◽  
Jerrold L. Belant ◽  
Clay M. Wilton ◽  
Nicholas Fowler ◽  
Brittany W. Waller ◽  
...  

The spatial scales at which animals make behavioral trade-offs is assumed to relate to the scales at which factors most limiting resources and increasing mortality risk occur. We used global positioning system collar locations of 29 reproductive-age female black bears (Ursus americanus Pallas, 1780) in three states to assess resource selection relative to bear population-specific density, an index of vegetation productivity, riparian corridors, or two road classes of and within home ranges during spring–summer of 2009–2013. Female resource selection was best explained by functional responses to vegetation productivity across nearly all populations and spatial scales, which appeared to be influenced by variation in bear density (i.e., intraspecific competition). Behavioral trade-offs were greatest at the landscape scale, but except for vegetation productivity, were consistent for populations across spatial scales. Females across populations selected locations nearer to tertiary roads, but females in Michigan and Mississippi selected main roads and avoided riparian corridors, whereas females in Missouri did the opposite, suggesting population-level trade-offs between resource (e.g., food) acquisition and mortality risks (e.g., vehicle collisions). Our study emphasizes that female bear population-level resource selection can be influenced by multiple spatially dependent factors, and that scale-dependent functional behavior should be identified for management of bears across their range.


2012 ◽  
Vol 279 (1747) ◽  
pp. 4626-4633 ◽  
Author(s):  
Nicholas J. DeCesare

Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves ( Canis lupus ) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk.


2019 ◽  
Author(s):  
Naveen Sendhilnathan ◽  
Anna E. Ipata ◽  
Michael E. Goldberg

AbstractHow do we learn to establish associations between arbitrary visual cues (like a red light) and movements (like braking the car)? We investigated the neural correlates of visuomotor association learning in the monkey mid-lateral cerebellum. Here we show that, during learning but not when the associations were overlearned, individual Purkinje cells reported the outcome of the monkey’s most recent decision, an error signal, which was independent of changes in hand movement or reaction time. At the population level, Purkinje cells collectively maintained a memory of the most recent decision throughout the entire trial period, updating it after every decision. This error signal decreased as the performance improved. Our results suggest a role of mid-lateral cerebellum in visuomotor associative learning and provide evidence that cerebellum could be a generalized learning system, essential in non-motor learning as well as motor learning.


2010 ◽  
Vol 365 (1550) ◽  
pp. 2187-2200 ◽  
Author(s):  
Jacqueline L. Frair ◽  
John Fieberg ◽  
Mark Hebblewhite ◽  
Francesca Cagnacci ◽  
Nicholas J. DeCesare ◽  
...  

Global positioning system (GPS) technologies collect unprecedented volumes of animal location data, providing ever greater insight into animal behaviour. Despite a certain degree of inherent imprecision and bias in GPS locations, little synthesis regarding the predominant causes of these errors, their implications for ecological analysis or solutions exists. Terrestrial deployments report 37 per cent or less non-random data loss and location precision 30 m or less on average, with canopy closure having the predominant effect, and animal behaviour interacting with local habitat conditions to affect errors in unpredictable ways. Home-range estimates appear generally robust to contemporary levels of location imprecision and bias, whereas movement paths and inferences of habitat selection may readily become misleading. There is a critical need for greater understanding of the additive or compounding effects of location imprecision, fix-rate bias, and, in the case of resource selection, map error on ecological insights. Technological advances will help, but at present analysts have a suite of ad hoc statistical corrections and modelling approaches available—tools that vary greatly in analytical complexity and utility. The success of these solutions depends critically on understanding the error-inducing mechanisms, and the biggest gap in our current understanding involves species-specific behavioural effects on GPS performance.


Sign in / Sign up

Export Citation Format

Share Document