scholarly journals Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton

2015 ◽  
Vol 12 (112) ◽  
pp. 20150791 ◽  
Author(s):  
Michael T. Barry ◽  
Roberto Rusconi ◽  
Jeffrey S. Guasto ◽  
Roman Stocker

Fluid flow, ubiquitous in natural and man-made environments, has the potential to profoundly impact the transport of microorganisms, including phytoplankton in aquatic habitats and bioreactors. Yet, the effect of ambient flow on the swimming behaviour of phytoplankton has remained poorly understood, largely owing to the difficulty of observing cell–flow interactions at the microscale. Here, we present microfluidic experiments where we tracked individual cells for four species of motile phytoplankton exposed to a spatially non-uniform fluid shear rate, characteristic of many flows in natural and artificial environments. We observed that medium-to-high mean shear rates (1–25 s −1 ) produce heterogeneous cell concentrations in the form of regions of accumulation and regions of depletion. The location of these regions relative to the flow depends on the cells' propulsion mechanism, body shape and flagellar arrangement, as captured by an effective aspect ratio. Species having a large effective aspect ratio accumulated in the high-shear regions, owing to shear-induced alignment of the swimming orientation with the fluid streamlines. Species having an effective aspect ratio close to unity exhibited little preferential accumulation at low-to-moderate flow rates, but strongly accumulated in the low-shear regions under high flow conditions, potentially owing to an active, behavioural response of cells to shear. These observations demonstrate that ambient fluid flow can strongly affect the motility and spatial distribution of phytoplankton and highlight the rich dynamics emerging from the interaction between motility, morphology and flow.

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2806
Author(s):  
Ranajay Datta ◽  
Leonid Yelash ◽  
Friederike Schmid ◽  
Florian Kummer ◽  
Martin Oberlack ◽  
...  

We investigate the molecular origin of shear-thinning in melts of flexible, semiflexible and rigid oligomers with coarse-grained simulations of a sheared melt. Entanglements, alignment, stretching and tumbling modes or suppression of the latter all contribute to understanding how macroscopic flow properties emerge from the molecular level. In particular, we identify the rise and decline of entanglements with increasing chain stiffness as the major cause for the non-monotonic behaviour of the viscosity in equilibrium and at low shear rates, even for rather small oligomeric systems. At higher shear rates, chains align and disentangle, contributing to shear-thinning. By performing simulations of single chains in shear flow, we identify which of these phenomena are of collective nature and arise through interchain interactions and which are already present in dilute systems. Building upon these microscopic simulations, we identify by means of the Irving–Kirkwood formula the corresponding macroscopic stress tensor for a non-Newtonian polymer fluid. Shear-thinning effects in oligomer melts are also demonstrated by macroscopic simulations of channel flows. The latter have been obtained by the discontinuous Galerkin method approximating macroscopic polymer flows. Our study confirms the influence of microscopic details in the molecular structure of short polymers such as chain flexibility on macroscopic polymer flows.


Author(s):  
Arman Sadeghi ◽  
Abolhassan Asgarshamsi ◽  
Mohammad Hassan Saidi

Fluid flow and heat transfer at microscale have attracted an important research interest in recent years due to the rapid development of microelectromechanical systems (MEMS). Fluid flow in microdevices has some characteristics which one of them is rarefaction effect related with gas flow. In this research, hydrodynamically and thermally fully developed laminar rarefied gas flow in annular microducts is studied using slip flow boundary conditions. Two different cases of the thermal boundary conditions are considered, namely: uniform temperature at the outer wall and adiabatic inner wall (Case A) and uniform temperature at the inner wall and adiabatic outer wall (Case B). Using the previously obtained velocity distribution, energy conservation equation subjected to relevant boundary conditions is numerically solved using fourth order Runge-Kutta method. The Nusselt number values are presented in graphical form as well as tabular form. It is realized that for the case A increasing aspect ratio results in increasing the Nusselt number, while the opposite is true for the case B. The effect of aspect ratio on Nusselt number is more notable at smaller values of Knudsen number, while its effect becomes slighter at large Knudsen numbers. Also increasing Knudsen number leads to smaller values of Nusselt number for the both cases.


Author(s):  
Scott C. Corbett ◽  
Amin Ajdari ◽  
Ahmet U. Coskun ◽  
Hamid N.-Hashemi

Thrombosis and hemolysis are two problems encountered when processing blood in artificial organs. Physical factors of blood flow alone can influence the interaction of proteins and cells with the vessel wall, induce platelet aggregation and influence coagulation factors responsible for the formation of thrombus, even in the absence of chemical factors in the blood. These physical factors are related to the magnitude of the shear rate/stress, the duration of the applied force and the local geometry. Specifically, high blood shear rates (or stress) lead to damage (hemolysis, platelet activation), while low shear rates lead to stagnation and thrombosis [1].


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2716-2716
Author(s):  
Vivien A. Sheehan ◽  
Sheryl Nelson ◽  
Caroline Yappan ◽  
Bogdan R. Dinu ◽  
Danielle Guffey ◽  
...  

Abstract Background: Sickle cell disease (SCD) patients have altered blood rheology due to erythrocyte abnormalities, including increased aggregation and reduced deformability, which together affect microcirculatory blood flow and tissue perfusion. At equal hematocrit, sickle cell blood viscosity is increased compared to normal individuals. The hematocrit to viscosity ratio (HVR) is a measure of red blood cell (RBC) oxygen carrying capacity, and is reduced in SCD with clinical consequences related to altered blood flow and reduced tissue oxygenation. Erythrocyte transfusions reduce HVR at low shear rates that mimic venous circulation, and do not change HVR at high shear rates that mimic arterial blood flow. Hydroxyurea is a safe and effective therapy for SCD; however, its effects on sickle cell rheology and HVR have not been fully investigated. Evaluating the effects of hydroxyurea on viscosity is especially critical, before its use is extended widely to patients with cerebrovascular disease or genotypes with higher hematocrit and higher viscosity such as Hemoglobin SC (HbSC). Methods: To determine the effects of hydroxyurea on viscosity and HVR, we designed a prospective study to measure whole blood viscosity at 45 s-1 (low shear) and 225 s-1(high shear) rates in pediatric patients with SCD using a Brookfield cone and plate viscometer under oxygenated conditions. Venous blood samples (1-3mL) were collected in EDTA and analyzed no more than 4 hours after phlebotomy; samples were run in duplicate by persons blinded to the patient’s sickle genotype and treatment status. Laboratory values were obtained using an ADVIA hematology analyzer. Samples were analyzed from three non-overlapping cohorts of patients with SCD and HbAA individuals for comparison: untreated HbSS patients (n= 43), HbSS patients treated with hydroxyurea at maximum tolerated dose (n=98), untreated HbSC patients (n=53) and HbAA patients (n=19). Laboratory parameters that differed significantly among the SCD groups were analyzed by simple linear regression. Results: Patient characteristics and viscosity measurements are shown in the Table. Within the SCD population, the viscosity was lowest among the untreated HbSS patients, presumably due to their low hematocrit, while viscosity was higher in HbSS patients on hydroxyurea and HbSC patients. When the HVR was calculated for each group, no significant difference was identified between untreated HbSS and untreated HbSC patients. However, hydroxyurea treatment significantly increased HVR at both 45s-1 and 225 s-1 (p<0.001), indicating that the slightly increased viscosity in this cohort was more than compensated by a higher hematocrit. Correlations were tested for hemoglobin (Hb), mean corpuscular volume (MCV), white blood cell count (WBC), absolute neutrophil count (ANC), absolute reticulocyte count (ARC), % fetal hemoglobin (HbF), and average red cell density in g/dL with HVR, at both shear rates. The hydroxyurea-associated HVR increase at both shear rates was independent of %HbF or MCV, but the increased HVR at 225 s-1was associated with lower WBC (p<0.001), lower ANC (p=0.002), and lower red cell density (p=.009). Conclusions: We provide prospective data on whole blood viscosity measurements in a large cohort of children with SCD. Hydroxyurea increases the hematocrit in HbSS patients more than the viscosity, and thus improves HVR. These findings imply that hydroxyurea improves RBC oxygen transport at both high and low shear rates, which should confer clinical benefits, and these effects are independent of HbF induction. Concerns about hydroxyurea increasing whole blood viscosity and reducing tissue oxygenation in children with cerebrovascular disease or HbSC patients may not be warranted, if the same beneficial HVR effects are achieved. Abstract 2717. Table 1. Patient characteristics. Viscosity was typically measured in duplicate and averaged for each patient. HVR at 45 s-1 and 225s-1 was calculated as hematocrit/viscosity. Results are presented as mean ± 2SD. HbAAn=19 HbSS, untreatedn=43 HbSS, on Hydroxyurean=98 HbSCn=53 Age (years) 15.4 ± 3.8 10.4 ± 5.1 10.7 ± 3.4 10.5 ± 4.3 Hemoglobin (gm/dL) 13.5 ± 1.7 8.5 ± 1.0 9.9 ± 1.4 11.0 ± 1.2 Hematocrit (%) 40.9 ± 5.3 25.5 ± 3.1 28.4 ± 3.7 31.3 ± 3.2 Viscosity (cP) at 45s-1 5.3 ± 0.9 4.6 ± 1.2 4.3 ± 0.9 5.5 ±0.9 HVR at 45s-1 7.5 ± 0.9 5.8 ± 1.1 6.75 ± 1.0 5.77 ± 0.7 Viscosity (cP) at 225s-1 3.8 ± 0.5 3.3 ± 0.5 3.4 ± 0.5 4.1 ± 0.5 HVR at 225s-1 10.3 ± 0.7 7.7 ± 0.8 8.53 ± 0.8 7.72 ± 0.6 Disclosures Off Label Use: Hydroxyurea is not FDA approved for use in pediatric sickle cell patients.


Author(s):  
Julia Cossé ◽  
John Sader ◽  
Daegyoum Kim ◽  
Cecilia Huertas Cerdeira ◽  
Morteza Gharib

The fluttering flag instability has been thoroughly studied through experimental, computational and theoretical means. However, each of these studies only considers the boundary conditions where a flagpole or other tethering mechanism precedes the plate in the fluid flow. Under the inverse condition, where the so-called flag is fixed by its downstream edge in the fluid flow, three regions of behavior exist: straight, flapping, and bent back. This paper expands on these findings by closely examining the transition regions between straight and flapping and flapping and bent back. The onset mechanism of the instability and the terminating mechanism are shown to be dependent on different factors. The region of flapping occurs within a narrow range of non-dimensional bending stiffness, with the region boundaries depending on the aspect ratio and angle of attack of the plate.


2021 ◽  
Vol 15 (3) ◽  
pp. 181-190
Author(s):  
Elif H Ozcan Cetin ◽  
Mehmet S Cetin ◽  
Mustafa B Ozbay ◽  
Hasan C Könte ◽  
Nezaket M Yaman ◽  
...  

Aim: We aimed to assess the association of whole blood with thromboembolic milieu in significant mitral stenosis patients. Methodology & results: We included 122 patients and classified patients into two groups as having thrombogenic milieu, thrombogenic milieu (+), otherwise patients without thrombogenic milieu, thrombogenic milieu (-). Whole blood viscosity (WBV) in both shear rates were higher in thrombogenic milieu (+) group comparing with thrombogenic milieu (-). WBV at high shear rate and WBV at low shear rate parameters were moderately correlated with grade of spontaneous echo contrast. Adjusted with other parameters, WBV parameters at both shear rates were associated with presence of thrombogenic milieu. Discussion & conclusion: We found that extrapolated WBV at both shear rates was significantly associated with the thrombogenic milieu in mitral stenosis. This easily available parameter may provide additional perspective about thrombogenic diathesis.


2019 ◽  
Vol 862 ◽  
pp. 1-4
Author(s):  
S. E. Spagnolie

The equations describing classical viscous fluid flow are notoriously challenging to solve, even approximately, when the flow is host to one or many immersed bodies. When an immersed body is slender, the smallness of its aspect ratio can sometimes be used as a basis for a ‘slender-body theory’ describing its interaction with the surrounding environment. If the fluid is complex, however, such theories are generally invalid and efforts to understand the dynamics of immersed bodies are almost entirely numerical in nature. In a valiant effort, Hewitt & Balmforth (J. Fluid Mech., vol. 856, 2018, pp. 870–897) have unearthed a theory to describe the motion of slender bodies in a viscoplastic fluid, ‘fluids’ such as mud or toothpaste which can be coaxed to flow, but only with a sufficiently large amount of forcing. Mathematical theories for some tremendously complicated physical systems may now be within reach.


Sign in / Sign up

Export Citation Format

Share Document