Effect of Blood Viscosity on Thrombosis Potential Near a Step Wall Transition

Author(s):  
Scott C. Corbett ◽  
Amin Ajdari ◽  
Ahmet U. Coskun ◽  
Hamid N.-Hashemi

Thrombosis and hemolysis are two problems encountered when processing blood in artificial organs. Physical factors of blood flow alone can influence the interaction of proteins and cells with the vessel wall, induce platelet aggregation and influence coagulation factors responsible for the formation of thrombus, even in the absence of chemical factors in the blood. These physical factors are related to the magnitude of the shear rate/stress, the duration of the applied force and the local geometry. Specifically, high blood shear rates (or stress) lead to damage (hemolysis, platelet activation), while low shear rates lead to stagnation and thrombosis [1].

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2716-2716
Author(s):  
Vivien A. Sheehan ◽  
Sheryl Nelson ◽  
Caroline Yappan ◽  
Bogdan R. Dinu ◽  
Danielle Guffey ◽  
...  

Abstract Background: Sickle cell disease (SCD) patients have altered blood rheology due to erythrocyte abnormalities, including increased aggregation and reduced deformability, which together affect microcirculatory blood flow and tissue perfusion. At equal hematocrit, sickle cell blood viscosity is increased compared to normal individuals. The hematocrit to viscosity ratio (HVR) is a measure of red blood cell (RBC) oxygen carrying capacity, and is reduced in SCD with clinical consequences related to altered blood flow and reduced tissue oxygenation. Erythrocyte transfusions reduce HVR at low shear rates that mimic venous circulation, and do not change HVR at high shear rates that mimic arterial blood flow. Hydroxyurea is a safe and effective therapy for SCD; however, its effects on sickle cell rheology and HVR have not been fully investigated. Evaluating the effects of hydroxyurea on viscosity is especially critical, before its use is extended widely to patients with cerebrovascular disease or genotypes with higher hematocrit and higher viscosity such as Hemoglobin SC (HbSC). Methods: To determine the effects of hydroxyurea on viscosity and HVR, we designed a prospective study to measure whole blood viscosity at 45 s-1 (low shear) and 225 s-1(high shear) rates in pediatric patients with SCD using a Brookfield cone and plate viscometer under oxygenated conditions. Venous blood samples (1-3mL) were collected in EDTA and analyzed no more than 4 hours after phlebotomy; samples were run in duplicate by persons blinded to the patient’s sickle genotype and treatment status. Laboratory values were obtained using an ADVIA hematology analyzer. Samples were analyzed from three non-overlapping cohorts of patients with SCD and HbAA individuals for comparison: untreated HbSS patients (n= 43), HbSS patients treated with hydroxyurea at maximum tolerated dose (n=98), untreated HbSC patients (n=53) and HbAA patients (n=19). Laboratory parameters that differed significantly among the SCD groups were analyzed by simple linear regression. Results: Patient characteristics and viscosity measurements are shown in the Table. Within the SCD population, the viscosity was lowest among the untreated HbSS patients, presumably due to their low hematocrit, while viscosity was higher in HbSS patients on hydroxyurea and HbSC patients. When the HVR was calculated for each group, no significant difference was identified between untreated HbSS and untreated HbSC patients. However, hydroxyurea treatment significantly increased HVR at both 45s-1 and 225 s-1 (p<0.001), indicating that the slightly increased viscosity in this cohort was more than compensated by a higher hematocrit. Correlations were tested for hemoglobin (Hb), mean corpuscular volume (MCV), white blood cell count (WBC), absolute neutrophil count (ANC), absolute reticulocyte count (ARC), % fetal hemoglobin (HbF), and average red cell density in g/dL with HVR, at both shear rates. The hydroxyurea-associated HVR increase at both shear rates was independent of %HbF or MCV, but the increased HVR at 225 s-1was associated with lower WBC (p<0.001), lower ANC (p=0.002), and lower red cell density (p=.009). Conclusions: We provide prospective data on whole blood viscosity measurements in a large cohort of children with SCD. Hydroxyurea increases the hematocrit in HbSS patients more than the viscosity, and thus improves HVR. These findings imply that hydroxyurea improves RBC oxygen transport at both high and low shear rates, which should confer clinical benefits, and these effects are independent of HbF induction. Concerns about hydroxyurea increasing whole blood viscosity and reducing tissue oxygenation in children with cerebrovascular disease or HbSC patients may not be warranted, if the same beneficial HVR effects are achieved. Abstract 2717. Table 1. Patient characteristics. Viscosity was typically measured in duplicate and averaged for each patient. HVR at 45 s-1 and 225s-1 was calculated as hematocrit/viscosity. Results are presented as mean ± 2SD. HbAAn=19 HbSS, untreatedn=43 HbSS, on Hydroxyurean=98 HbSCn=53 Age (years) 15.4 ± 3.8 10.4 ± 5.1 10.7 ± 3.4 10.5 ± 4.3 Hemoglobin (gm/dL) 13.5 ± 1.7 8.5 ± 1.0 9.9 ± 1.4 11.0 ± 1.2 Hematocrit (%) 40.9 ± 5.3 25.5 ± 3.1 28.4 ± 3.7 31.3 ± 3.2 Viscosity (cP) at 45s-1 5.3 ± 0.9 4.6 ± 1.2 4.3 ± 0.9 5.5 ±0.9 HVR at 45s-1 7.5 ± 0.9 5.8 ± 1.1 6.75 ± 1.0 5.77 ± 0.7 Viscosity (cP) at 225s-1 3.8 ± 0.5 3.3 ± 0.5 3.4 ± 0.5 4.1 ± 0.5 HVR at 225s-1 10.3 ± 0.7 7.7 ± 0.8 8.53 ± 0.8 7.72 ± 0.6 Disclosures Off Label Use: Hydroxyurea is not FDA approved for use in pediatric sickle cell patients.


Platelets ◽  
2016 ◽  
Vol 27 (6) ◽  
pp. 583-592 ◽  
Author(s):  
Yuji Takeda ◽  
Mikio Marumo ◽  
Hidetoshi Nara ◽  
Zhong-Gang Feng ◽  
Hironobu Asao ◽  
...  

1998 ◽  
Vol 80 (09) ◽  
pp. 443-448 ◽  
Author(s):  
P. H. M. Kuijper ◽  
H. I. Gallardo Torres ◽  
J.-W. J. Lammers ◽  
J. J. Sixma ◽  
L. Koenderman ◽  
...  

SummarySurface-bound platelets support selectin-mediated rolling and β2-integrin-mediated firm adhesion of neutrophils (PMN) under flow conditions. We examined which ligands on platelets mediate this firm adhesion. Surface-bound platelets express ICAM-2 and GPIIbIIIa-bound fibrinogen, which are ligands for LFA-1 and MAC-1. In a well defined model for vessel wall injury, blood from an afibrinogenemic patient was perfused over ECM-coated coverslips to obtain fibrinogen-free platelet surfaces. At high shear rates, PMN-adhesion to fibrinogen-free platelet surfaces decreased compared to fibrinogen-containing controls. Under these conditions, firm adhesion and not rolling was blocked demonstrating the importance of fibrinogen in this process. In addition, MAC-1 and LFA-1 on PMN and ICAM-2 on platelets played a role in firm adhesion; the effect of blocking antibodies was most evident at high shear. The effects of fibrinogen depletion and ICAM-2 blocking were additive. In conclusion, multiple redundant ligands, like ICAM-2 and fibrinogen, induce firm and shear resistant PMN adhesion to platelets under flow conditions. Individually these ligands become critical at higher shear. Blocking of two or more interactions also interferes with low shear adhesion.


2005 ◽  
Vol 6 (2) ◽  
pp. 65 ◽  
Author(s):  
Marc Gerdisch ◽  
Thomas Hinkamp ◽  
Stephen D. Ainsworth

<P>Background: Use of the interrupted coronary anastomosis has largely been abandoned in favor of the more rapid continuous suturing technique. The Coalescent U-CLIP anastomotic device allows the surgeon to create an interrupted distal anastomosis in the same amount of time that it would take to create a continuous anastomosis. This acute bovine study examined the effect of the anastomotic technique on blood flow and vessel wall function. </P><P>Methods: End-to-side coronary anastomoses were created in an open chest bovine model using the left and right internal thoracic arteries and the left anterior descending coronary artery. All other variables except suturing technique were carefully controlled. In each animal, one anastomosis was completed using a continuous suturing technique and the other was performed in an interrupted fashion using the Coalescent U-CLIP anastomotic device. Volumetric flow curves through each graft were analyzed using key indicators of anastomotic quality, and anastomotic compliance was evaluated using intravascular ultrasound. Luminal castings were created of each vessel to examine the interior surface of each anastomosis for constrictions and deformities. </P><P>Results: The interrupted anastomoses created with the Coalescent U-CLIP anastomotic device showed significant differences with respect to anastomotic compliance, pulsatility index, peak flow, and percentage of diastolic flow. The cross-sectional area and degree of luminal deformity were also different for the two suturing techniques. </P><P>Conclusions: In this acute bovine model, interrupted coronary anastomoses demonstrated superior geometric consistency and greater physiologic compliance than did continuously sutured anastomoses. The interrupted anastomosis also caused fewer disturbances to the flow waveform, behaving similarly to a normal vessel wall. The combination of these effects may influence both acute and long-term patency of the coronary bypass grafts.</P>


1934 ◽  
Vol 25 (4) ◽  
pp. 491-494 ◽  
Author(s):  
P. A. Buxton

During the last decade, entomologists have made progress in understanding the environment in which certain insects live; in particular, we begin to understand the effect of certain physical and chemical factors, which make up a part of the environment. With this gain in knowledge, it is sometimes possible to forecast outbreaks of insects and of diseases conveyed by them, and one can sometimes say that a particular alteration of the environment will result in loss or gain. But so far as mosquitos are concerned, one must admit that though much work has been devoted to the analytical study of the water in which the early stages are passed, the results are disappointing. A consideration of the published work suggests several reasons for this. Investigation into the ecology of the mosquito has had a vogue, and much of it has been done by workers who were isolated and whose knowledge of chemical technique and freshwater biology was limited. Apart from that, the inherent difficulties are great, for the worker must hunt for the limiting chemical and physical factors among a host of others which are doubtless unimportant, and there are few clues to indicate which of the chemical constituents of the water affects the mosquito. The data are therefore voluminous and it is difficult to reduce them to order and present them so that they can be readily understood.


2020 ◽  
pp. 26-35
Author(s):  
Sergey Babanov

Diseases of the kidneys and urinary tract, primarily of toxic and chemical etiology, constitute a large proportion of occupational diseases. Various production factors of both chemical and physical nature can cause the development of nephropathies. Sergey Babanov, Doctor of Medicine, Professor, Head of the Department of occupational diseases and clinical pharmacology at the Federal State-Funded Educational Institution of Higher Education Samara State Medical University of the Ministry of Health of the Russian Federation, chief freelance specialist in occupational pathology at the Ministry of Health of the Samara region, speaks about occupational diseases of the kidneys and urinary tract associated with the exposure to chemical and physical factors.


Sign in / Sign up

Export Citation Format

Share Document