scholarly journals Evolution of cooperation with asymmetric social interactions

2022 ◽  
Vol 119 (1) ◽  
pp. e2113468118
Author(s):  
Qi Su ◽  
Benjamin Allen ◽  
Joshua B. Plotkin

How cooperation emerges in human societies is both an evolutionary enigma and a practical problem with tangible implications for societal health. Population structure has long been recognized as a catalyst for cooperation because local interactions facilitate reciprocity. Analysis of population structure typically assumes bidirectional social interactions. But human social interactions are often unidirectional—where one individual has the opportunity to contribute altruistically to another, but not conversely—as the result of organizational hierarchies, social stratification, popularity effects, and endogenous mechanisms of network growth. Here we expand the theory of cooperation in structured populations to account for both uni- and bidirectional social interactions. Even though unidirectional interactions remove the opportunity for reciprocity, we find that cooperation can nonetheless be favored in directed social networks and that cooperation is provably maximized for networks with an intermediate proportion of unidirectional interactions, as observed in many empirical settings. We also identify two simple structural motifs that allow efficient modification of interaction directions to promote cooperation by orders of magnitude. We discuss how our results relate to the concepts of generalized and indirect reciprocity.

2015 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

AbstractSpatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure 𝒮1 is greater than population structure 𝒮2 in the containment or the volume order, then 𝒮1 can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.


2019 ◽  
Vol 16 (152) ◽  
pp. 20180918 ◽  
Author(s):  
Jessie Renton ◽  
Karen M. Page

Cooperation is prevalent in nature, not only in the context of social interactions within the animal kingdom but also on the cellular level. In cancer, for example, tumour cells can cooperate by producing growth factors. The evolution of cooperation has traditionally been studied for well-mixed populations under the framework of evolutionary game theory, and more recently for structured populations using evolutionary graph theory (EGT). The population structures arising due to cellular arrangement in tissues, however, are dynamic and thus cannot be accurately represented by either of these frameworks. In this work, we compare the conditions for cooperative success in an epithelium modelled using EGT, to those in a mechanical model of an epithelium—the Voronoi tessellation (VT) model. Crucially, in this latter model, cells are able to move, and birth and death are not spatially coupled. We calculate fixation probabilities in the VT model through simulation and an approximate analytic technique and show that this leads to stronger promotion of cooperation in comparison with the EGT model.


2020 ◽  
Author(s):  
Dor Cohen ◽  
Ohad Lewin-Epstein ◽  
Marcus W. Feldman ◽  
Yoav Ram

AbstractCultural evolution of cooperation under vertical and non-vertical cultural transmission is studied, and conditions are found for fixation and coexistence of cooperation and defection. The evolution of cooperation is facilitated by its horizontal transmission and by an association between social interactions and horizontal transmission. The effect of oblique transmission depends on the horizontal transmission bias. Stable polymorphism of cooperation and defection can occur, and when it does, reduced association between social interactions and horizontal transmission evolves, which leads to a decreased frequency of cooperation and lower population mean fitness. The deterministic conditions are compared to outcomes of stochastic simulations of structured populations. Parallels are drawn with Hamilton’s rule incorporating assortment and effective relatedness.


2016 ◽  
Vol 13 (114) ◽  
pp. 20150881 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.


2021 ◽  
Vol 288 (1951) ◽  
pp. 20203162
Author(s):  
Dor Cohen ◽  
Ohad Lewin-Epstein ◽  
Marcus W. Feldman ◽  
Yoav Ram

Cultural evolution of cooperation under vertical and non-vertical cultural transmission is studied, and conditions are found for fixation and coexistence of cooperation and defection. The evolution of cooperation is facilitated by its horizontal transmission and by an association between social interactions and horizontal transmission. The effect of oblique transmission depends on the horizontal transmission bias. Stable polymorphism of cooperation and defection can occur, and when it does, reduced association between social interactions and horizontal transmission evolves, which leads to a decreased frequency of cooperation and lower population mean fitness. The deterministic conditions are compared to outcomes of stochastic simulations of structured populations. Parallels are drawn with Hamilton’s rule incorporating relatedness and assortment.


Games ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 41
Author(s):  
Swami Iyer ◽  
Timothy Killingback

Cooperation in social dilemmas plays a pivotal role in the formation of systems at all levels of complexity, from replicating molecules to multi-cellular organisms to human and animal societies. In spite of its ubiquity, the origin and stability of cooperation pose an evolutionary conundrum, since cooperation, though beneficial to others, is costly to the individual cooperator. Thus natural selection would be expected to favor selfish behavior in which individuals reap the benefits of cooperation without bearing the costs of cooperating themselves. Many proximate mechanisms have been proposed to account for the origin and maintenance of cooperation, including kin selection, direct reciprocity, indirect reciprocity, and evolution in structured populations. Despite the apparent diversity of these approaches they all share a unified underlying logic: namely, each mechanism results in assortative interactions in which individuals using the same strategy interact with a higher probability than they would at random. Here we study the evolution of cooperation in both discrete strategy and continuous strategy social dilemmas with assortative interactions. For the sake of tractability, assortativity is modeled by an individual interacting with another of the same type with probability r and interacting with a random individual in the population with probability 1−r, where r is a parameter that characterizes the degree of assortativity in the system. For discrete strategy social dilemmas we use both a generalization of replicator dynamics and individual-based simulations to elucidate the donation, snowdrift, and sculling games with assortative interactions, and determine the analogs of Hamilton’s rule, which govern the evolution of cooperation in these games. For continuous strategy social dilemmas we employ both a generalization of deterministic adaptive dynamics and individual-based simulations to study the donation, snowdrift, and tragedy of the commons games, and determine the effect of assortativity on the emergence and stability of cooperation.


2006 ◽  
Vol 27 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Ana-Maria Vranceanu ◽  
Linda C. Gallo ◽  
Laura M. Bogart

The present study investigated whether a social information processing bias contributes to the inverse association between trait hostility and perceived social support. A sample of 104 undergraduates (50 men) completed a measure of hostility and rated videotaped interactions in which a speaker disclosed a problem while a listener reacted ambiguously. Results showed that hostile persons rated listeners as less friendly and socially supportive across six conversations, although the nature of the hostility effect varied by sex, target rated, and manner in which support was assessed. Hostility and target interactively impacted ratings of support and affiliation only for men. At least in part, a social information processing bias could contribute to hostile persons' perceptions of their social networks.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 139 ◽  
Author(s):  
Vincenzo Cutello ◽  
Georgia Fargetta ◽  
Mario Pavone ◽  
Rocco A. Scollo

Community detection is one of the most challenging and interesting problems in many research areas. Being able to detect highly linked communities in a network can lead to many benefits, such as understanding relationships between entities or interactions between biological genes, for instance. Two different immunological algorithms have been designed for this problem, called Opt-IA and Hybrid-IA, respectively. The main difference between the two algorithms is the search strategy and related immunological operators developed: the first carries out a random search together with purely stochastic operators; the last one is instead based on a deterministic Local Search that tries to refine and improve the current solutions discovered. The robustness of Opt-IA and Hybrid-IA has been assessed on several real social networks. These same networks have also been considered for comparing both algorithms with other seven different metaheuristics and the well-known greedy optimization Louvain algorithm. The experimental analysis conducted proves that Opt-IA and Hybrid-IA are reliable optimization methods for community detection, outperforming all compared algorithms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Teruyoshi Kobayashi ◽  
Mathieu Génois

AbstractDensification and sparsification of social networks are attributed to two fundamental mechanisms: a change in the population in the system, and/or a change in the chances that people in the system are connected. In theory, each of these mechanisms generates a distinctive type of densification scaling, but in reality both types are generally mixed. Here, we develop a Bayesian statistical method to identify the extent to which each of these mechanisms is at play at a given point in time, taking the mixed densification scaling as input. We apply the method to networks of face-to-face interactions of individuals and reveal that the main mechanism that causes densification and sparsification occasionally switches, the frequency of which depending on the social context. The proposed method uncovers an inherent regime-switching property of network dynamics, which will provide a new insight into the mechanics behind evolving social interactions.


Sign in / Sign up

Export Citation Format

Share Document