scholarly journals Gut instincts: vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders

Open Biology ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 200063 ◽  
Author(s):  
Destiny Ogbu ◽  
Eric Xia ◽  
Jun Sun

The gut microbiome regulates a relationship with the brain known as the gut–microbiota–brain (GMB) axis. This interaction is influenced by immune cells, microbial metabolites and neurotransmitters. Recent findings show gut dysbiosis is prevalent in autism spectrum disorder (ASD) as well as attention deficit hyperactivity disorder (ADHD). There are previously established negative correlations among vitamin D, vitamin D receptor (VDR) levels and severity of ASD as well as ADHD. Both vitamin D and VDR are known to regulate homeostasis in the brain and the intestinal microbiome. This review summarizes the growing relationship between vitamin D/VDR signalling and the GMB axis in ASD and ADHD. We focus on current publications and summarize the progress of GMB in neurodevelopmental disorders, describe effects and mechanisms of vitamin D/VDR in regulating the microbiome and synoptically highlight the potential applications of targeting vitamin D/VDR signalling in neurodevelopment disorders.

2013 ◽  
Vol 19 (8) ◽  
pp. 1035-1045 ◽  
Author(s):  
Jun-ichi Satoh ◽  
Hiroko Tabunoki

Background: Vitamin D is a liposoluble vitamin essential for calcium metabolism. The ligand-bound vitamin D receptor (VDR), heterodimerized with retinoid X receptor, interacts with vitamin D response elements (VDREs) to regulate gene expression. Vitamin D deficiency due to insufficient sunlight exposure confers an increased risk for multiple sclerosis (MS). Objective: To study a protective role of vitamin D in multiple sclerosis (MS), it is important to characterize the global molecular network of VDR target genes (VDRTGs) in immune cells. Methods: We identified genome-wide VDRTGs collectively from two distinct chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) datasets of VDR-binding sites derived from calcitriol-treated human cells of B cell and monocyte origins. We mapped short reads of next generation sequencing (NGS) data on hg19 with Bowtie, detected the peaks with Model-based Analysis of ChIP-Seq (MACS), and identified genomic locations by GenomeJack, a novel genome viewer for NGS platforms. Results: We found 2997 stringent peaks distributed on protein-coding genes, chiefly located in the promoter and the intron on VDRE DR3 sequences. However, the corresponding transcriptome data verified calcitriol-induced upregulation of only a small set of VDRTGs. The molecular network of 1541 calcitriol-responsive VDRTGs showed a significant relationship with leukocyte transendothelial migration, Fcγ receptor-mediated phagocytosis, and transcriptional regulation by VDR, suggesting a pivotal role of genome-wide VDRTGs in immune regulation. Conclusion: These results suggest the working hypothesis that persistent deficiency of vitamin D might perturb the complex network of VDRTGs in immune cells, being responsible for induction of an autoimmune response causative for MS.


Author(s):  
Heather B. Patisaul ◽  
Scott M. Belcher

This chapter focuses on the role environmental pollutants are playing in the rapidly rising rate of neurodevelopmental disorders in children. The available EDC data are summarized and analyzed in relation to whether or not evidence supports a role for EDCs as contributing to neural disorders. The distinction between endocrine disruption and neurotoxicity is established by focusing on the differences between toxicants, toxins, and altered endocrine/neuroendocrine effects in organizational alterations of the brain. Evidence from experimental systems demonstrating effects of EDCs on the developing brain and the potential roles for EDCs as bad actors in rising rates of autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD) are presented in detail. Additional impacts of EDCs on neurodegenerative disorders, including Parkinsons’s disease, are reviewed. The mechanisms of rotenone and paraquat neurodegeneration are compared and contrasted with the evidence and mechanisms of actions for organochlorine and organophosphate pesticides in Parkinsons’s disease.


2020 ◽  
Author(s):  
Samantha M. Golomb ◽  
Ian H. Guldner ◽  
Anqi Zhao ◽  
Qingfei Wang ◽  
Bhavana Palakurthi ◽  
...  

ABSTRACTThe brain contains a diverse array of immune cell types. The phenotypic and functional plasticity of brain immune cells collectively contribute to brain tissue homeostasis and disease progression. Immune cell plasticity is profoundly influenced by local tissue microenvironment cues and systemic factors. Yet, the transcriptional mechanism by which systemic stimuli, such as aging and gut microbiota dysbiosis, reshape brain immune cell plasticity and homeostasis has not been fully delineated. Using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq), we analyzed compositional and transcriptional changes of the brain immune landscape in response to aging and gut dysbiosis. We first examined the discordance between canonical surface marker-defined immune cell types (Cell-ID) and their transcriptome signatures, which suggested transcriptional plasticity among immune cells despite sharing the same cell surface markers. Specifically, inflammatory and patrolling Ly6C+ monocytes were shifted predominantly to a pro-inflammatory transcriptional program in the aged brain, while brain ILCs shifted toward an ILC2 transcriptional profile. Finally, aging led to an increase of ILC-like cells expressing a T memory stemness (Tscm) signature in the brain. Antibiotics (ABX)-induced gut dysbiosis reduced the frequency of ILCs exhibiting Tscm-like properties in the aged mice, but not in the young mice. Enabled by high-resolution single-cell molecular phenotyping, our study revealed that systemic changes due to aging and gut dysbiosis prime the brain environment for an increased propensity for neuroinflammation, which provided insights into gut dysbiosis in age-related neurological diseases.Manuscript SummaryGolomb et al. performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) on immune cells from the brains of young and aged mice with and without antibiotics-induced gut dysbiosis. High resolution, single cell immunophenotyping enabled the dissection of extensive transcriptional plasticity of canonically identified monocytes and innate lymphoid cells (ILCs) in the aged brain. Through differential gene expression and trajectory inference analyses, the authors revealed tissue microenvironment-dependent cellular responses influenced by aging and gut dysbiosis that may potentiate neuroinflammatory diseases.Graphical Abstract


2020 ◽  
Author(s):  
He You ◽  
Toshiyuki Mizui ◽  
Kazuyuki Kiyosue ◽  
Keizo Takao ◽  
Tsuyoshi Miyakawa ◽  
...  

AbstractAutism spectrum disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is oppositely regulated by brain-derived neurotrophic factor (BDNF): the precursor proBDNF inhibits while mature BDNF (mBDNF) potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is inhibited. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed decreased brain volumes, reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity. They also exhibited ASD-like phenotypes, including stereotypical behaviors, deficits in social interaction, hyperactivity, and elevated stress response. Interestingly, the plasma level of proBDNF, but not mBDNF, was significantly elevated in ASD patients. These results suggest that proBDNF level, but not Bdnf gene, is associated with autism-spectrum behaviors, and identify a potential blood marker and therapeutic target for ASD.


Development ◽  
2021 ◽  
Author(s):  
Till Scheuer ◽  
Elena auf dem Brinke ◽  
Sabine Grosser ◽  
Susanne A. Wolf ◽  
Daniele Mattei ◽  
...  

The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the mechanisms underlying are not known. In a translational hyperoxia model, exposing mice pups at age P5 to 80% oxygen for 48 hours to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin expressing interneurons until adulthood. Developmental delay of cortical myelin was observed together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor being involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning, and attention. These results elucidate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Dan Liu ◽  
Yu-Xuan Fang ◽  
Xia Wu ◽  
Wei Tan ◽  
Wei Zhou ◽  
...  

Abstract Background Recent evidence has suggested that the 1,25(OH)2D3/Vitamin D receptor (VDR) acts to suppress the immune response associated with systemic lupus erythematosus (SLE), a serious multisystem autoimmune disease. Hence, the aim of the current study was to investigate the mechanism by which 1,25-(OH)2D3/VDR influences SLE through regulating the Skp2/p27 signaling pathway. Methods Initially, the levels of 1,25(OH)2D3, VDR, Skp2, and p27 were measured in collected renal tissues and peripheral blood. Meanwhile, the levels of inflammatory factors, biochemical indicators (BUN, Cr, anti-nRNP IgG, anti-dsDNA IgG) and urinary protein levels were assayed in in VDRinsert and VDR-knockout mice in response to 1,25(OH)2D3 supplement. In addition, the distribution of splenic immune cells was observed in these mice. Results Among the SLE patients, the levels of 1,25(OH)2D3, VDR and p27 were reduced, while the levels of Skp2 were elevated. In addition, the levels of anti-nRNP IgG and anti-dsDNA IgG were increased, suggesting induction of inflammatory responses. Notably, 1,25(OH)2D3/VDR mice had lower concentrations of BUN and Cr, urinary protein levels, precipitation intensity of the immune complex and complement, as well as the levels of anti-nRNP IgG and anti-dsDNA IgG in SLE mice. Additionally, 1,25(OH)2D3 or VDR reduced the degree of the inflammatory response while acting to regulate the distribution of splenic immune cells. Conclusion This study indicated that 1,25-(OH)2D3/VDR facilitated the recovery of SLE by downregulating Skp2 and upregulating p27 expression, suggesting the potential of 1,25-(OH)2D3/VDR as a promising target for SLE treatment.


Sign in / Sign up

Export Citation Format

Share Document