scholarly journals The causal meaning of Hamilton’s rule

2016 ◽  
Vol 3 (3) ◽  
pp. 160037 ◽  
Author(s):  
Samir Okasha ◽  
Johannes Martens

Hamilton’s original derivation of his rule for the spread of an altruistic gene ( rb > c ) assumed additivity of costs and benefits. Recently, it has been argued that an exact version of the rule holds under non-additive pay-offs, so long as the cost and benefit terms are suitably defined, as partial regression coefficients. However, critics have questioned both the biological significance and the causal meaning of the resulting rule. This paper examines the causal meaning of the generalized Hamilton’s rule in a simple model, by computing the effect of a hypothetical experiment to assess the cost of a social action and comparing it to the partial regression definition. The two do not agree. A possible way of salvaging the causal meaning of Hamilton’s rule is explored, by appeal to R. A. Fisher’s ‘average effect of a gene substitution’.

Author(s):  
James A.R. Marshall

This chapter examines what happens in nonadditive interactions when such interactions take place between relatives, and how Hamilton's rule can be extended in two different ways to accommodate such nonadditivity. It first considers the selective pressures on nonadditive behaviors directed towards relatives by making use of the replicator dynamics to capture interactions within structured populations, so that on average, interactions within the population occur between relatives. It then describes two extensions to Hamilton's rule to deal with nonadditive interactions. One approach takes deviations from additivity and accounts for them all in a single synergistic coefficient. The other approach applies partial regression to keep a version of Hamilton's rule with only three parameters, in which costs and benefits vary according to the frequency of social individuals in a population. The chapter also explains the use of the Price equation to study nonadditive social interactions between relatives.


2020 ◽  
Author(s):  
Kaleda K Denton ◽  
Yoav Ram ◽  
Marcus W Feldman

The evolution of altruism is frequently studied using models of non-random assortment, including kin selection. In genetic kin selection models, under certain assumptions including additive costs and benefits, the criterion for altruism to invade a population is Hamilton's rule. Deviations from Hamilton's rule occur when vertical transmission has cultural and genetic components, or when costs and benefits are combined multiplicatively. Here, we include oblique and vertical cultural transmission and genetic transmission in four models--two forms of parent-to-offspring altruism, sibling-to-sibling altruism, and altruism between offspring that meet assortatively--under additive or multiplicative assumptions. Oblique transmission may be conformist (anti-conformist), where the probability that an individual acquires a more common cultural variant is greater (less) than its frequency. Inclusion of conformist or anti-conformist oblique transmission may reduce or increase the threshold for invasion by altruism relative to Hamilton's rule. Thresholds for invasion by altruism are lower with anti-conformity than with conformity, and lower or the same with additive rather than multiplicative fitness components. Invasion by an allele that increases the preference for altruism does not depend on oblique phenotypic transmission, and with sibling-to-sibling altruism, this allele's invasion threshold can be higher with additive rather than multiplicative fitnesses.


2017 ◽  
Vol 114 (22) ◽  
pp. 5665-5670 ◽  
Author(s):  
Martin A. Nowak ◽  
Alex McAvoy ◽  
Benjamin Allen ◽  
Edward O. Wilson

Hamilton’s rule asserts that a trait is favored by natural selection if the benefit to others, B, multiplied by relatedness, R, exceeds the cost to self, C. Specifically, Hamilton’s rule states that the change in average trait value in a population is proportional to BR−C. This rule is commonly believed to be a natural law making important predictions in biology, and its influence has spread from evolutionary biology to other fields including the social sciences. Whereas many feel that Hamilton’s rule provides valuable intuition, there is disagreement even among experts as to how the quantities B, R, and C should be defined for a given system. Here, we investigate a widely endorsed formulation of Hamilton’s rule, which is said to be as general as natural selection itself. We show that, in this formulation, Hamilton’s rule does not make predictions and cannot be tested empirically. It turns out that the parameters B and C depend on the change in average trait value and therefore cannot predict that change. In this formulation, which has been called “exact and general” by its proponents, Hamilton’s rule can “predict” only the data that have already been given.


Author(s):  
Jonathan Birch

Queller’s version of Hamilton’s rule (HRG), derived from the Price equation, states that the mean breeding value for a social character increases if and only if rb > c, where r is the coefficient of relatedness between social partners, b is the benefit conferred on recipients, and c is the cost incurred by actors. The value of HRG lies in its ability to provide an organizing framework for social evolution theory, helping us to interpret, classify, and compare more detailed models of particular scenarios. HRG does this by allowing us to classify causal explanations of positive change by their commitments regarding the sign of rb and c. This leads to a four-part taxonomy of explanations, comprising indirect fitness explanations, direct fitness explanations, hybrid explanations, and wholly or partially non-selective explanations. There are plausible instances of all four categories in the natural world.


Author(s):  
James A.R. Marshall

This chapter examines four variants of Hamilton's rule and how they give different evolutionary explanations for certain social behaviors such as greenbeard traits. These variants are: HR1, which extends Hamilton's rule with a synergistic coefficient capturing the deviation from additivity of fitness interactions; HR2, which deals with the conditional expression of phenotype; HR3, which is concerned with fitness as partial regression; and HR4, the geometric view of relatedness. These variants differ in how they treat the three key parameters of the original: “relatedness,” “cost,” and “benefit.” The chapter also considers how the nongenetic explanation of the evolution of altruism can actually be recast in a version with genetic relatedness, and how geometric relatedness underlies phenotypic assortment. Finally, it discusses different viewpoints on conditional behaviors.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Matthijs van Veelen

How generally Hamilton’s rule holds is a much debated question. The answer to that question depends on how costs and benefits are defined. When using the regression method to define costs and benefits, there is no scope for violations of Hamilton’s rule. We introduce a general model for assortative group compositions to show that, when using the counterfactual method for computing costs and benefits, there is room for violations. The model also shows that there are limitations to observing violations in equilibrium, as the discrepancies between Hamilton’s rule and the direction of selection may imply that selection will take the population out of the region of disagreement, precluding observations of violations in equilibrium. Given what it takes to create a violation, empirical tests of Hamilton’s rule, both in and out of equilibrium, require the use of statistical models that allow for identifying non-linearities in the fitness function.


2009 ◽  
Vol 364 (1533) ◽  
pp. 3191-3207 ◽  
Author(s):  
Jacobus J. Boomsma

All evidence currently available indicates that obligatory sterile eusocial castes only arose via the association of lifetime monogamous parents and offspring. This is consistent with Hamilton's rule ( br s > r o c ), but implies that relatedness cancels out of the equation because average relatedness to siblings ( r s ) and offspring ( r o ) are both predictably 0.5. This equality implies that any infinitesimally small benefit of helping at the maternal nest ( b ), relative to the cost in personal reproduction ( c ) that persists throughout the lifespan of entire cohorts of helpers suffices to establish permanent eusociality, so that group benefits can increase gradually during, but mostly after the transition. The monogamy window can be conceptualized as a singularity comparable with the single zygote commitment of gametes in eukaryotes. The increase of colony size in ants, bees, wasps and termites is thus analogous to the evolution of multicellularity. Focusing on lifetime monogamy as a universal precondition for the evolution of obligate eusociality simplifies the theory and may help to resolve controversies about levels of selection and targets of adaptation. The monogamy window underlines that cooperative breeding and eusociality are different domains of social evolution, characterized by different sectors of parameter space for Hamilton's rule.


2007 ◽  
pp. 70-84 ◽  
Author(s):  
E. Demidova

This article analyzes definitions and the role of hostile takeovers at the Russian and European markets for corporate control. It develops the methodology of assessing the efficiency of anti-takeover defenses adapted to the conditions of the Russian market. The paper uses the cost-benefit analysis, where the costs and benefits of the pre-bid and post-bid defenses are compared.


Author(s):  
Samir Okasha

Inclusive fitness theory, originally due to W. D. Hamilton, is a popular approach to the study of social evolution, but shrouded in controversy. The theory contains two distinct aspects: Hamilton’s rule (rB > C); and the idea that individuals will behave as if trying to maximize their inclusive fitness in social encounters. These two aspects of the theory are logically separable but often run together. A generalized version of Hamilton’s rule can be formulated that is always true, though whether it is causally meaningful is debatable. However, the individual maximization claim only holds true if the payoffs from the social encounter are additive. The notion that inclusive fitness is the ‘goal’ of individuals’ social behaviour is less robust than some of its advocates acknowledge.


2021 ◽  
Vol 11 (10) ◽  
pp. 4553
Author(s):  
Ewelina Ziajka-Poznańska ◽  
Jakub Montewka

The development of autonomous ship technology is currently in focus worldwide and the literature on this topic is growing. However, an in-depth cost and benefit estimation of such endeavours is in its infancy. With this systematic literature review, we present the state-of-the-art system regarding costs and benefits of the operation of prospective autonomous merchant ships with an objective for identifying contemporary research activities concerning an estimation of operating, voyage, and capital costs in prospective, autonomous shipping and vessel platooning. Additionally, the paper outlines research gaps and the need for more detailed business models for operating autonomous ships. Results reveal that valid financial models of autonomous shipping are lacking and there is significant uncertainty affecting the cost estimates, rendering only a reliable evaluation of specific case studies. The findings of this paper may be found relevant not only by academia, but also organisations considering to undertake a challenge of implementing Maritime Autonomous Surface Ships in their operations.


Sign in / Sign up

Export Citation Format

Share Document