scholarly journals The role of three heat shock protein genes in the immune response to Aeromonas hydrophila challenge in marbled eel, Anguilla marmorata

2016 ◽  
Vol 3 (10) ◽  
pp. 160375 ◽  
Author(s):  
Fenfei Liang ◽  
Guosong Zhang ◽  
Shaowu Yin ◽  
Li Wang

Heat shock proteins (HSPs) are highly conserved molecular chaperones that play critical roles in both innate and adaptive immunity. However, little information about HSPs from marbled eel Anguilla marmorata is known. In this study, the full-length Amhsp90 (2527 bp), Amhsp70 (2443 bp) and Amhsc70 (2247 bp) were first cloned from A. marmorata , using rapid amplification of cDNA ends, containing open reading frames of 2181, 1932 and 1950 bp in length, and encoding proteins with 726, 643 and 649 amino acids, respectively. The deduced amino acid sequences of three Amhsps shared a high homology similarity with other migratory fish. Real-time fluorescent quantitative polymerase chain reaction was used to evaluate tissue-specific distribution and mRNA expression levels of three Amhsps subjected to infection with Aeromonas hydrophila . The mRNA expression of three Amhsps in eight tested tissues, namely liver, heart, muscle, gill, spleen, kidney, brain and intestine, of juvenile A. marmorata was evaluated to reveal the major expression distribution in liver, intestine, muscle and heart. After pathogen challenge treatments, mRNA transcriptions of three Amhsps revealed a significant regulation at various time points in the same tissue. All these findings suggest that Amhsps may be involved in the immune response in A. marmorata .

2007 ◽  
Vol 85 (3) ◽  
pp. 362-371 ◽  
Author(s):  
Martine Liberge ◽  
Roxane-M. Barthélémy

Immunohistochemical methods were applied in the present study to investigate the expression of stress proteins such as metallothioneins (MT), which are metal-binding proteins, and heat shock proteins (Hsp70), as well as an antioxidant enzyme (superoxide dismutase, SOD), in the freshwater crustacean copepod Hemidiaptomus roubaui (Richard, 1888) exposed to cadmium or heat stress. The results show a tissue-specific distribution of MT-like protein after cadmium exposure in the brain and in the nerve cord. Cadmium stress did not provoke inducible Hsp70 or SOD expression. Unlike cadmium, heat stress induced the expression of Hsp70 and SOD in the shell glands, a structure involved in the reproductive function, and more particularly in the formation of the diapause egg envelope. MT expression is not induced in animals exposed to heat stress.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3821-3821
Author(s):  
Hideto Tamura ◽  
Kazuo Dan ◽  
Norio Yokose ◽  
Rika Iwakiri ◽  
Masatsugu Ohta ◽  
...  

Abstract Abstract 3821 Poster Board III-757 (INTRODUCTION) The Wilms tumor gene (WT1) message is overexpressed in tumor cells from various solid cancers as well as hematologic malignancies including myelodysplastic syndromes (MDS). We reported previously that WT1 mRNA expression in peripheral blood mononuclear cells (PBMCs) as well as bone marrow (BM) cells increased with the aggressiveness of MDS disease subtype as defined by the French-American-British (FAB) classification and that a humoral immune response, IgG- or IgM-type anti-WT1 antibody (Ab) expression, was detected in sera from most MDS patients. In this study, we investigated whether WT1 mRNA expression and anti-WT1 Ab titers in PB were associated with prognosis in MDS patients by examining their long-term follow-up data. (METHODS AND RESULTS) (1) WT1 mRNA expression in PBMCs was examined in 80 patients: 35 with refractory anemia (RA); 5 with RA with ringed sideroblasts (RARS); 24 with RA with excess blasts (RAEB); 5 with RAEB in transformation (RAEB-t); and 11 with acute myeloid leukemia transformed from MDS (AML-MDS). Levels of WT1 mRNA expression were assessed using the real-time quantitative polymerase chain reaction [Tamaki H, et al, Leukemia 1999]. WT1 mRNA levels increased with the aggressiveness of disease subtype (mean: RA, 220.9; RARS, 129.4; RAEB, 5,554.3; RAEB-t, 14,284.0; AML-MDS, 56,272.7 copies/μg) and with the aggressiveness of the International Prognostic Scoring System (IPSS) category (mean: low, 114.5; intermediate-1, 360.8; intermediate-2, 12,041.6; high, 7,357.9 copies/μg) in these patients. (2) IgG- and IgM-type anti-WT1 Ab titers were determined using the dot-blot assay [Elisseeva OA, Blood 2002] in sera from 45 of the 80 patients: 15 RA; 3 RARS; 18 RAEB; 3 RAEB-t; and 6 AML-MDS. IgM and IgG WT1 Abs were detected in 31 (79.5%) and 34 (87.2%) MDS patients, and 5 (83.3%) and 6 (100%) AML-MDS patients, respectively. WT1 Abs levels were not correlated with FAB subtype, IPSS, or WT1 mRNA expression in PBMCs. (3) When patients were divided into three groups based on the WT1 mRNA level (fewer than 100 copies/μg, 100 to 10,000 copies/μg, and more than 10,000 copies/μg), their survival rates differed significantly (P = 0.0186): survival was worse in those with increased WT1 mRNA levels. Specifically, a high WT1 mRNA level was a strong predictor of rapid AML transformation even if adjusted by the IPSS (P = 0.0005). Furthermore, patients with high levels of either IgM or IgG WT1 Abs had significantly better survival compared with those whose IgM and IgG WT1 Abs values were both low (P = 0.0007) even when adjusted by the IPSS (P = 0.0019). (CONCLUSIONS) This study showed for the first time that high WT1 mRNA expression and high WT1 Ab titers in PB affected the prognosis of MDS patients negatively and positively, respectively, suggesting that an optimal immune response against WT1 may beneficial. Recently, clinical trials of WT1 peptide-based immunotherapy have been conducted for various malignancies including MDS. Our data presented here may provide a rationale for anti-WT1 immunotherapy in MDS. Disclosures: No relevant conflicts of interest to declare.


High-temperature stress or heat shock induces the vigorous synthesis of heat-shock proteins in many organisms including the higher plants. This response has been implicated in the acquisition of thermotolerance. The biological importance of a group of low-molecular-mass proteins in the response of plants is indicated by the conservation of the corresponding genes. The steady-state levels of mRNAs for these proteins shift from undetectable levels at normal temperature to about 20 000 molecules per gene in the cell after heat shock. The analysis of ‘run-off’ transcripts from isolated soybean nuclei suggests a transcriptional control of gene expression. The DNA sequence analysis of soybean heat-shock genes revealed a conservation of promoter sequences and 5'-upstream elements. A comparison of the deduced amino acid sequences of polypeptides showed a conservation of structural features in heat-shock proteins between plants and animals. The implication of a common regulatory concept in the heat-shock response makes genes belonging to this family (15-18 kDa proteins) in soybean favourable candidates for investigating thermoregulation of transcription. We have exploited the natural gene transfer system of Agrobacterium tumefaciens to introduce a soybean heat-shock gene into the genomes of sunflower and tobacco. The gene is thermoinducibly transcribed and transcripts are faithfully initiated in transgenic plants. Experiments are in progress to define the regulatory sequences 5'-upstream from the gene. The expression of heat-shock genes in a heterologous genetic background also provides the basis for studying the function of the proteins and their possible role in thermoprotection.


2009 ◽  
Vol 260 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Abbas Azadmehr ◽  
Ali Akbar Pourfathollah ◽  
Zahra Amirghofran ◽  
Zuhair Mohammad Hassan ◽  
Seyed Mohammad Moazzeni

2007 ◽  
Vol 59 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Kei Amemiya ◽  
Jennifer L. Meyers ◽  
David DeShazer ◽  
Renaldo N. Riggins ◽  
Stephanie Halasohoris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document