scholarly journals A new rhynchocephalian (Reptilia: Lepidosauria) from the Late Jurassic of Solnhofen (Germany) and the origin of the marine Pleurosauridae

2017 ◽  
Vol 4 (11) ◽  
pp. 170570 ◽  
Author(s):  
Gabriel S. Bever ◽  
Mark A. Norell

A new rhynchocephalian is described based on a recently discovered and well-preserved specimen from the Late Jurassic (Kimmeridgian) marine limestones of Solnhofen, Bavaria. Phylogenetic analysis recovers the new taxon as the sister group to Pleurosauridae, a small radiation of rhynchocephalians representing the oldest marine invasion of crown-clade Lepidosauria. The relatively strong evidence for this taxonomically exclusive lineage, within a generally volatile rhynchocephalian tree, places the new taxon in a position to inform the early history of the pleurosaur transition to the sea. The early steps in this transition are distributed throughout the skeleton and appear to increase hydrodynamic efficiency for both swimming and aquatic feeding. This early history may also have included a global truncation of plesiomorphic ontogenetic trajectories that left a number of skeletal features with reduced levels of ossification/fusion. The exact degree to which Vadasaurus had adopted an aquatic ecology remains unclear, but the insight it provides into the origin of the enigmatic pleurosaurs exemplifies the potential of Rhynchocephalia for generating and informing broad-based questions regarding the interplay of development, morphology, ecology and macroevolutionary patterns.

2008 ◽  
Vol 276 (1658) ◽  
pp. 879-886 ◽  
Author(s):  
Jérémy Anquetin ◽  
Paul M Barrett ◽  
Marc E.H Jones ◽  
Scott Moore-Fay ◽  
Susan E Evans

The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic–Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.


2017 ◽  
Author(s):  
Jérémy Anquetin ◽  
Paul M. Barrett ◽  
Marc E. H. Jones ◽  
Scott Moore-Fay ◽  
Susan E. Evans

The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic–Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.


2020 ◽  
Vol 7 (2) ◽  
pp. 191936 ◽  
Author(s):  
Serjoscha W. Evers ◽  
Walter G. Joyce

Sandownidae is an enigmatic group of Cretaceous–Paleogene turtles with highly derived cranial anatomy. Although sandownid monophyly is not debated, relationships with other turtles remain unclear. Sandownids have been recovered in significantly different parts of the turtle tree: as stem-turtles, stem-cryptodires and stem-chelonioid sea turtles. Latest phylogenetic studies find sandownids as the sister-group of the Late Jurassic thalassochelydians and as stem-turtles. Here, we provide a detailed study of the cranial and mandibular anatomy of Sandownia harrisi from the Aptian of the Isle of Wight, based on high resolution computed tomography scanning of the holotype. Our results confirm a high number of anatomical similarities with thalassochelydians and particularly Solnhofia parsonsi , which is interpreted as an early member of the sandownid lineage. Sandownids + Solnhofia show many cranial modifications related to the secondary palate and a durophagous diet. Sandownia is additionally highly derived in features related to its arterial circulation and neuroanatomy, including the endosseous labyrinth. Our results imply rapid morphological evolution during the early history of sandownids. Sandownids likely evolved in central Europe from thalassochelydian ancestors during the Late Jurassic. The durophagous diet of sandownids possibly facilitated their survival of the Cretaceous/Paleogene mass extinction.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11363
Author(s):  
Andrea Villa ◽  
Roel Montie ◽  
Martin Röper ◽  
Monika Rothgaenger ◽  
Oliver W.M. Rauhut

The Solnhofen Archipelago is well known for its fossil vertebrates of Late Jurassic age, among which figure numerous rhynchocephalian specimens, representing at least six and up to nine genera. A new taxon, named Sphenofontis velserae gen. et sp. nov., increases rhynchocephalian diversity in the Solnhofen Archipelago and is herein described based on a single, well-preserved specimen originating from the Late Kimmeridgian of the Brunn quarry, near Regensburg. The exquisite preservation of the holotype allowed a detailed description of the animal, revealing a skeletal morphology that includes both plesiomorphic and derived features within rhynchocephalians. Sphenofontis is herein referred to Neosphenodontia and tentatively to sphenodontine sphenodontids. It notably differs from all other rhynchocephalians known from the Jurassic of Europe, showing instead closer resemblance with the Middle Jurassic Cynosphenodon from Mexico and especially the extant Sphenodon. This is evidence for a wide distribution of taxa related to the extant tuatara early in the Mesozoic, and also for the presence of less-specialized rhynchocephalians coexisting with more derived forms during the earliest time in the history of the Solnhofen Archipelago.


Zootaxa ◽  
2008 ◽  
Vol 1863 (1) ◽  
pp. 1 ◽  
Author(s):  
PATRICK S. DRUCKENMILLER ◽  
ANTHONY P. RUSSELL

Leptocleidus Andrews, 1922 is a poorly known plesiosaur genus from Lower Cretaceous successions of the UK, South Africa, and Australia. Historically, there has been little consensus regarding its phylogenetic position within Plesiosauria, largely because of its seemingly aberrant combination of a relatively small skull and short neck. As a result, a diverse array of potential sister groups have been posited for Leptocleidus, including long-necked Cretaceous elasmosaurids, Early Jurassic “rhomaleosaurs”, and Middle to Late Jurassic pliosaurids. A cladistic analysis including Leptocleidus, and a new, apparently morphologically similar specimen from Alberta, TMP 94.122.01, was undertaken to assess their phylogenetic position within Plesiosauria. A character-taxon matrix was assembled afresh, consisting of 33 operational taxonomic units sampled broadly among plesiosaurs. 185 cranial and postcranial characters used in plesiosaur phylogenetics were critically reanalyzed, of which 152 were employed in the parsimony analysis. The results indicate a basal dichotomous split into the traditionally recognized pliosauroid and plesiosauroid clades. Nested within Pliosauroidea, a monophyletic Leptocleididae was recovered, consisting of L. superstes Andrews, 1922 and L. capensis (Andrews, 1911a). In contrast to earlier suggestions, Leptocleidus neither clusters with Rhomaleosaurus, which was found to be paraphyletic, nor with large-skulled pliosaurid taxa, such as Simolestes. Rather, a sister group relationship between Cretaceous Polycotylidae and Leptocleididae was recovered, which is here named Leptocleidoidea. Although TMP 94.122.01 is superficially similar to Leptocleidus, several discrete characters of the skull nest this new taxon within Polycotylidae. Compared to other phylogenetic hypotheses of plesiosaurs, these results are more congruent with respect to the stratigraphic distribution of leptocleidoids. A classification for Plesiosauria is presented.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6915 ◽  
Author(s):  
Michelangelo Bisconti ◽  
Dirk K. Munsterman ◽  
Klaas Post

Background Balaenopterid mysticetes represent the most successful family-rank group of this clade. Their evolutionary history is characterized by a rich fossil record but the origin of the living genera is still largely not understood. Recent discoveries in the southern border of the North Sea revealed a number of well preserved fossil balaenopterid whales that may help resolving this problem. In particular, skull NMR 14035 shares morphological characters with the living humpback whale, Megaptera novaeangliae and, for this reason, its characteristics are investigated here. Methods The comparative anatomical analysis of the new specimen formed the basis of a new phylogenetic analysis of the Mysticeti based on a matrix including 350 morphological character states scored for 82 Operational Taxonomic Units. The stratigraphic age of the specimen was determined based on the analysis of the dinocyst assemblage recovered in the associated sediment. We assessed clade diversity in Balaenopteridae by counting the numbers of clades in given time intervals and then plotted the results. Results Nehalaennia devossi n. gen. et sp. is described for the first time from the late Tortonian (8.7–8.1 Ma) of the Westerschelde (The Netherlands). This new taxon belongs to Balaenopteridae and shows a surprisingly high number of advanced characters in the skull morphology. Nehalaennia devossi is compared to a large sample of balaenopterid mysticetes and a phylogenetic analysis placed it as the sister group of a clade including the genus Archaebalaenoptera. The inclusion of this fossil allowed to propose a phylogenetic hypothesis for Balaenopteridae in which (1) Eschrichtiidae (gray whales) represents a family of its own, (2) Balaenopteridae + Eschrichtiidae form a monophyletic group (superfamily Balaenopteroidea), (3) Cetotheriidae is the sister group of Balaenopteroidea, (4) living Balaenoptera species form a monophyletic group and (5) living M. novaeangliae is the sister group of Balaenoptera. Our work reveals a complex phylogenetic history of Balaenopteridae and N. devossi informs us about the early morphological transformations in this family. Over time, this family experienced a number of diversity pulses suggesting that true evolutionary radiations had taken place. The paleoecological drivers of these pulses are then investigated.


2007 ◽  
Vol 3 (3) ◽  
pp. 318-322 ◽  
Author(s):  
Marcelo Sánchez-Villagra ◽  
Sandrine Ladevèze ◽  
Inés Horovitz ◽  
Christine Argot ◽  
Jeremy J Hooker ◽  
...  

A major gap in our knowledge of the evolution of marsupial mammals concerns the Paleogene of the northern continents, a critical time and place to link the early history of metatherians in Asia and North America with the more recent diversification in South America and Australia. We studied new exceptionally well-preserved partial skeletons of the Early Oligocene fossil Herpetotherium from the White River Formation in Wyoming, which allowed us to test the relationships of this taxon and examine its adaptations. Herpetotheriidae, with a fossil record extending from the Cretaceous to the Miocene, has traditionally been allied with opossums (Didelphidae) based on fragmentary material, mainly dentitions. Analysis of the new material reveals that several aspects of the cranial and postcranial anatomy, some of which suggests a terrestrial lifestyle, distinguish Herpetotherium from opossums. We found that Herpetotherium is the sister group to the crown group Marsupialia and is not a stem didelphid. Combination of the new palaeontological data with molecular divergence estimates, suggests the presence of a long undocumented gap in the fossil record of opossums extending some 45 Myr from the Early Miocene to the Cretaceous.


Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.


1979 ◽  
Vol 115 (11) ◽  
pp. 1317-1319 ◽  
Author(s):  
J. E. Morgan

Sign in / Sign up

Export Citation Format

Share Document