scholarly journals Exceptionally preserved North American Paleogene metatherians: adaptations and discovery of a major gap in the opossum fossil record

2007 ◽  
Vol 3 (3) ◽  
pp. 318-322 ◽  
Author(s):  
Marcelo Sánchez-Villagra ◽  
Sandrine Ladevèze ◽  
Inés Horovitz ◽  
Christine Argot ◽  
Jeremy J Hooker ◽  
...  

A major gap in our knowledge of the evolution of marsupial mammals concerns the Paleogene of the northern continents, a critical time and place to link the early history of metatherians in Asia and North America with the more recent diversification in South America and Australia. We studied new exceptionally well-preserved partial skeletons of the Early Oligocene fossil Herpetotherium from the White River Formation in Wyoming, which allowed us to test the relationships of this taxon and examine its adaptations. Herpetotheriidae, with a fossil record extending from the Cretaceous to the Miocene, has traditionally been allied with opossums (Didelphidae) based on fragmentary material, mainly dentitions. Analysis of the new material reveals that several aspects of the cranial and postcranial anatomy, some of which suggests a terrestrial lifestyle, distinguish Herpetotherium from opossums. We found that Herpetotherium is the sister group to the crown group Marsupialia and is not a stem didelphid. Combination of the new palaeontological data with molecular divergence estimates, suggests the presence of a long undocumented gap in the fossil record of opossums extending some 45 Myr from the Early Miocene to the Cretaceous.

Author(s):  
Chris Keith

This book offers a new material history of the Jesus tradition. It shows that the introduction of manuscripts to the transmission of the Jesus tradition played an underappreciated but crucial role in the reception history of the tradition that eventuated. It focuses particularly on the competitive textualization of the Jesus tradition, whereby Gospel authors drew attention to the written nature of their tradition, sometimes in attempts to assert superiority to predecessors, and the public reading of the Jesus tradition. Both these processes reveal efforts on the part of early followers of Jesus to place the gospel-as-manuscript on display, whether in the literary tradition or in the assembly. Building upon interdisciplinary work on ancient book cultures, this book traces an early history of the gospel as artifact from the textualization of Mark in the first century until the eventual usage of liturgical reading as a marker of authoritative status in the second and third centuries and beyond. Overall, it reveals a vibrant period of the development of the Jesus tradition, wherein the material status of the tradition frequently played as important a role as the ideas about Jesus that it contained.


Paleobiology ◽  
2013 ◽  
Vol 39 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Martin Dohrmann ◽  
Sergio Vargas ◽  
Dorte Janussen ◽  
Allen G. Collins ◽  
Gert Wörheide

Reconciliation of paleontological and molecular phylogenetic evidence holds great promise for a better understanding of the temporal succession of cladogenesis and character evolution, especially for taxa with a fragmentary fossil record and uncertain classification. In zoology, studies of this kind have largely been restricted to Bilateria. Hexactinellids (glass sponges) readily lend themselves to test such an approach for early-branching (non-bilaterian) animals: they have a long and rich fossil record, but for certain taxa paleontological evidence is still scarce or ambiguous. Furthermore, there is a lack of consensus for taxonomic interpretations, and discrepancies exist between neontological and paleontological classification systems. Using conservative fossil calibration constraints and the largest molecular phylogenetic data set assembled for this group, we infer divergence times of crown-group Hexactinellida in a Bayesian relaxed molecular clock framework. With some notable exceptions, our results are largely congruent with interpretations of the hexactinellid fossil record, but also indicate long periods of undocumented evolution for several groups. This study illustrates the potential of an integrated molecular/paleobiological approach to reconstructing the evolution of challenging groups of organisms.


2008 ◽  
Vol 276 (1658) ◽  
pp. 879-886 ◽  
Author(s):  
Jérémy Anquetin ◽  
Paul M Barrett ◽  
Marc E.H Jones ◽  
Scott Moore-Fay ◽  
Susan E Evans

The discovery of a new stem turtle from the Middle Jurassic (Bathonian) deposits of the Isle of Skye, Scotland, sheds new light on the early evolutionary history of Testudinata. Eileanchelys waldmani gen. et sp. nov. is known from cranial and postcranial material of several individuals and represents the most complete Middle Jurassic turtle described to date, bridging the morphological gap between basal turtles from the Late Triassic–Early Jurassic and crown-group turtles that diversify during the Late Jurassic. A phylogenetic analysis places the new taxon within the stem group of Testudines (crown-group turtles) and suggests a sister-group relationship between E. waldmani and Heckerochelys romani from the Middle Jurassic of Russia. Moreover, E. waldmani also demonstrates that stem turtles were ecologically diverse, as it may represent the earliest known aquatic turtle.


2015 ◽  
Author(s):  
Walter G. Joyce ◽  
Márton Rabi

Background. Over the course of the last decades, much effort has gone into unraveling the biogeographic history of turtles, but while much progress has been achieved in resolving post- Jurassic dispersal events, traditional phylogenetic hypotheses have yielded incongruous results in regards to the early history of the group. Methods. We re-evaluate the fossil record of turtles in context of recent phylogenetic analyses and fossil finds, including the extensive record of fragmentary but diagnostic remains. Given that near-coastal and marine turtles readily disperse across aquatic barriers, a broad set of neritic to pelagic groups were disregarded from consideration. Significant disagreement still exists among current phylogenetic hypotheses and we therefore place much effort into tracing the fossil record of unambiguously monophyletic groups. We finally employed molecular backbone constraints, given that the molecular phylogenies are more consistent with the fossil record than current, morphological phylogenies. Results. Among derived, aquatic turtles, we recognize four clades that can be traced back to discrete biogeographic centers: Paracryptodira in North America and Europe, Pan- Cryptodira in Asia, Pan-Pelomedusoides in northern Gondwanan landmasses and Pan- Chelidae in southern Gondwanan landmasses. This pattern is partially mirrored by three clades of primarily terrestrial, basal turtles: Solemydidae in North American and Europe, Sichuanchelyidae in Asia, and Meiolaniformes sensu stricto in southern Gondwanan landmasses. Although the exact interrelationships of these clades remain unclear, most can be traced back to the Middle Jurassic. Discussion. The conclusion that the two primary lineages of pleurodires and paracryptodires can be traced back to mutually exclusive land masses is not novel, but the realization that the early history of pan-cryptodires is restricted to Asia has not been realized previously, because traditional phylogenies implied an early, global presence of pan-cryptodires. The timing of the origin of the three primary clades of derived turtles (i.e., Pan-Pleurodira, Pan-Cryptodira, and Paracryptodira) correlates with the opening of the central Atlantic and the formation of the Turgai Strait in the Middle Jurassic, somewhat later than predicted by molecular calibration studies. The primary diversity of extant turtles therefore appears to have been driven by vicariance. A similar hypothesis could also be formulated for the three clades of basal turtles that survive at least into the Late Cretaceous, but given that their combined monophyly remains uncertain, it is unclear if their diversity was also driven by vicariance, or if they emulate a vicariance-like pattern. Although most groups remained within their primary geographic range throughout their evolutionary history, the dominant vicariance signal was thoroughly obfuscated by rich dispersal from littoral to marine turtles and crown cryptodires.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3844 ◽  
Author(s):  
Cara Van Der Wal ◽  
Shane T. Ahyong ◽  
Simon Y.W. Ho ◽  
Nathan Lo

The crustacean order Stomatopoda comprises seven superfamilies of mantis shrimps, found in coastal waters of the tropics and subtropics. These marine carnivores bear notable raptorial appendages for smashing or spearing prey. We investigated the evolutionary relationships among stomatopods using phylogenetic analyses of three mitochondrial and two nuclear markers. Our analyses recovered the superfamily Gonodactyloidea as polyphyletic, withHemisquillaas the sister group to all other extant stomatopods. A relaxed molecular clock, calibrated by seven fossil-based age constraints, was used to date the origin and major diversification events of stomatopods. Our estimates suggest that crown-group stomatopods (Unipeltata) diverged from their closest crustacean relatives about 340 Ma (95% CRI [401–313 Ma]). We found that the specialized smashing appendage arose after the spearing appendage ∼126 Ma (95% CRI [174–87 Ma]). Ancestral state reconstructions revealed that the most recent common ancestor of extant stomatopods had eyes with six midband rows of hexagonal ommatidia. Hexagonal ommatidia are interpreted as plesiomorphic in stomatopods, and this is consistent with the malacostracan ground-plan. Our study provides insight into the evolutionary timescale and systematics of Stomatopoda, although further work is required to resolve with confidence the phylogenetic relationships among its superfamilies.


Life ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 27 ◽  
Author(s):  
Giovanni Bianucci ◽  
Christian de Muizon ◽  
Mario Urbina ◽  
Olivier Lambert

Several aspects of the fascinating evolutionary history of toothed and baleen whales (Cetacea) are still to be clarified due to the fragmentation and discontinuity (in space and time) of the fossil record. Here we open a window on the past, describing a part of the extraordinary cetacean fossil assemblage deposited in a restricted interval of time (19–18 Ma) in the Chilcatay Formation (Peru). All the fossils here examined belong to the Platanistoidea clade as here redefined, a toothed whale group nowadays represented only by the Asian river dolphin Platanista gangetica. Two new genera and species, the hyper-longirostrine Ensidelphis riveroi and the squalodelphinid Furcacetus flexirostrum, are described together with new material referred to the squalodelphinid Notocetus vanbenedeni and fragmentary remains showing affinities with the platanistid Araeodelphis. Our cladistic analysis defines the new clade Platanidelphidi, sister-group to Allodelphinidae and including E. riveroi and the clade Squalodelphinidae + Platanistidae. The fossils here examined further confirm the high diversity and disparity of platanistoids during the early Miocene. Finally, morphofunctional considerations on the entire platanistoid assemblage of the Chilcatay Formation suggest a high trophic partitioning of this peculiar cetacean paleocommunity.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6327 ◽  
Author(s):  
Bryan M. Gee ◽  
Joseph J. Bevitt ◽  
Ulf Garbe ◽  
Robert R. Reisz

The Hapsidopareiidae is a group of “microsaurs” characterized by a substantial reduction of several elements in the cheek region that results in a prominent, enlarged temporal emargination. The clade comprises two markedly similar taxa from the early Permian of Oklahoma, Hapsidopareion lepton and Llistrofus pricei, which have been suggested to be synonymous by past workers. Llistrofus was previously known solely from the holotype found near Richards Spur, which consists of a dorsoventrally compressed skull in which the internal structures are difficult to characterize. Here, we present data from two new specimens of Llistrofus. This includes data collected through the use of neutron tomography, which revealed important new details of the palate and the neurocranium. Important questions within “Microsauria” related to the evolutionary transformations that likely occurred as part of the acquisition of the highly modified recumbirostran morphology for a fossorial ecology justify detailed reexamination of less well-studied taxa, such as Llistrofus. Although this study eliminates all but one of the previous features that differentiated Llistrofus and Hapsidopareion, the new data and redescription identify new features that justify the maintained separation of the two hapsidopareiids. Llistrofus possesses some of the adaptations for a fossorial lifestyle that have been identified in recumbirostrans but with a lesser degree of modification (e.g., reduced neurocranial ossification and mandibular modification). Incorporating the new data for Llistrofus into an existing phylogenetic matrix maintains the Hapsidopareiidae’s (Llistrofus + Hapsidopareion) position as the sister group to Recumbirostra. Given its phylogenetic position, we contextualize Llistrofus within the broader “microsaur” framework. Specifically, we propose that Llistrofus may have been fossorial but was probably incapable of active burrowing in the fashion of recumbirostrans, which had more consolidated and reinforced skulls. Llistrofus may represent an earlier stage in the step-wise acquisition of the derived recumbirostran morphology and paleoecology, furthering our understanding of the evolutionary history of “microsaurs.”


2008 ◽  
Vol 56 (6) ◽  
pp. 395 ◽  
Author(s):  
Robert W. Meredith ◽  
Michael Westerman ◽  
Mark S. Springer

Kangaroos and kin (Macropodiformes) are the most conspicuous elements of the Australasian marsupial fauna. The approximately 70 living species can be divided into three families: (1) Hypsiprymnodontidae (the musky rat kangaroo); (2) Potoroidae (potoroos and bettongs); and (3) Macropodidae (larger kangaroos, wallabies, banded hare wallaby and pademelons). Here we examine macropodiform relationships using protein-coding portions of the ApoB, BRCA1, IRBP, Rag1 and vWF genes via maximum parsimony, maximum likelihood and Bayesian methods. We estimate times of divergence using two different relaxed molecular clock methods to present a timescale for macropodiform evolution and reconstruct ancestral states for grades of dental organisation. We find robust support for a basal split between Hypsiprymnodontidae and the other macropodiforms, potoroid monophyly and macropodid monophyly, with Lagostrophus as the sister-taxon to all other macropodids. Our divergence estimates suggest that kangaroos diverged from Phalangeroidea in the early Eocene, that crown-group Macropodiformes originated in the late Eocene or early Oligocene and that the potoroid–macropodid split occurred in the late Oligocene or early Miocene followed by rapid cladogenesis within these families 5 to 15 million years ago. These divergence estimates coincide with major geological and ecological changes in Australia. Ancestral state reconstructions for grades of dental organisation suggest that the grazer grade evolved independently on two different occasions within Macropodidae.


1887 ◽  
Vol 8 ◽  
pp. 159-193
Author(s):  
Ernest A. Gardner

The last year has been most fruitful of results to the archæologist. Excavations on many Greek sites have supplied abundant material for new work and speculation. But important as may be the gains to other branches of archæology, none are so brilliant as those that have so greatly increased our knowledge of the early history of Greek sculpture. It must be many years before archæologists are agreed on the exact position and import of the new statues in relation to the early history of art; longer still before all that those statues can teach us shall have been learnt. In the present paper no attempt can be made to criticise and discuss fully the many difficult questions to which their discovery has given rise— much less to assign finally to each of them its place in the history of religion and sculpture. Many of the early chapters of that history must be reconsidered and in part rewritten before all the statues we now possess find their due place in a recognised and unbroken series of monuments of various ages and of various local schools. Meanwhile it may be well to indicate the directions in which the influence of our newly-acquired knowledge is likely to be felt, and to endeavour to estimate the meaning and the importance of the new material that the science of archæology has acquired.


2019 ◽  
Vol 7 ◽  
pp. 111-128
Author(s):  
Sinjini Sinha ◽  
Don B Brinkman ◽  
Alison M. Murray

            Isolated centra of members of the Esocidae occur frequently in vertebrate microfossil localities of Late Cretaceous and early Paleocene age and are an important source of data on the early history of the family. However, morphological variation along the vertebral column can lead to incorrect interpretations of diversity if they are not recognized. To facilitate the use of centra for interpreting the diversity and distribution of esocids in Cretaceous vertebrate microfossil localities, the variation along the column in five extant species of esocids is described. Comparison with Cretaceous centra referred to the Esocidae allows identification of a series of features in which species of Esox differ from basal members of the family. These include the presence of a mid-ventral groove bordered by a pair of low budges on centra in the anterior end of the column, and antero-lateral processes on the posterior abdominal and anterior caudal centra. These differences provide a basis for recognizing early occurrences of the genus Esox in the fossil record and thus will allow centra to be used to document the timing of origin of the genus.


Sign in / Sign up

Export Citation Format

Share Document