scholarly journals Correction to ‘Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution’

2017 ◽  
Vol 4 (8) ◽  
pp. 170846 ◽  
Author(s):  
Roger S. Seymour ◽  
Vanya Bosiocic ◽  
Edward P. Snelling
1994 ◽  
Vol 267 (2) ◽  
pp. R590-R595 ◽  
Author(s):  
G. E. Nilsson ◽  
P. Hylland ◽  
C. O. Lofman

The crucian carp (Carassius carassius) has the rare ability to survive prolonged anoxia, indicating an extraordinary capacity for glycolytic ATP production, especially in a highly energy-consuming organ like the brain. For the brain to be able to increase its glycolytic flux during anoxia and profit from the large liver glycogen store, an increased glucose delivery from the blood would be expected. Nevertheless, the effect of anoxia on brain blood flow in crucian carp has never been studied previously. We have used epireflection microscopy to directly observe and measure blood flow rate on the brain surface (optic lobes) during normoxia and anoxia in crucian carp. We have also examined the possibility that adenosine participates in the regulation of brain blood flow rate in crucian carp. The results showed a 2.16-fold increase in brain blood flow rate during anoxia. A similar increase was seen after topical application of adenosine during normoxia, while adenosine was without effect during anoxia. Moreover, superfusing the brain with the adenosine receptor blocker aminophylline inhibited the effect of anoxia on brain blood flow rate, clearly suggesting a mediatory role of adenosine in the anoxia-induced increase in brain blood flow rate.


2015 ◽  
Vol 35 (4) ◽  
pp. 648-654 ◽  
Author(s):  
Laleh Zarrinkoob ◽  
Khalid Ambarki ◽  
Anders Wåhlin ◽  
Richard Birgander ◽  
Anders Eklund ◽  
...  

High-resolution phase—contrast magnetic resonance imaging can now assess flow in proximal and distal cerebral arteries. The aim of this study was to describe how total cerebral blood flow (tCBF) is distributed into the vascular tree with regard to age, sex and anatomic variations. Forty-nine healthy young (mean 25 years) and 45 elderly (mean 71 years) individuals were included. Blood flow rate (BFR) in 21 intra- and extracerebral arteries was measured. Total cerebral blood flow was defined as BFR in the internal carotid plus vertebral arteries and mean cerebral perfusion as tCBF/brain volume. Carotid/vertebral distribution was 72%/28% and was not related to age, sex, or brain volume. Total cerebral blood flow (717±123 mL/min) was distributed to each side as follows: middle cerebral artery (MCA), 21%; distal MCA, 6%; anterior cerebral artery (ACA), 12%, distal ACA, 4%; ophthalmic artery, 2%; posterior cerebral artery (PCA), 8%; and 20% to basilar artery. Deviating distributions were observed in subjects with ‘fetal’ PCA. Blood flow rate in cerebral arteries decreased with increasing age ( P<0.05) but not in extracerebral arteries. Mean cerebral perfusion was higher in women (women: 61±8; men: 55±6 mL/min/100 mL, P<0.001). The study describes a new method to outline the flow profile of the cerebral vascular tree, including reference values, and should be used for grading the collateral flow system.


1976 ◽  
Vol 44 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Francis W. Gamache ◽  
Ronald E. Myers ◽  
Esteban Monell

✓ The authors studied local cerebral blood flow in monkeys rendered hypotensive by infusion of a ganglionic blocking agent. Application of the 14C-antipyrine method demonstrated that the blood flow: 1) normally varies reproducibly from one structure to another within the brain; 2) appears at its lowest level in all structures during the early minutes of a rapid-onset hypotension; 3) maintains the same general rank order of blood flow rate during hypotension as was present during normotension; and 4) returns to supranormal levels immediately following the rapid restoration of blood pressure. The values for local cerebral blood flow remain close-to-normal in some animals and diminish significantly in others during late recovery from hypotension. The close-to-normal values accompany uncomplicated recoveries while the diminished values appear in those animals which became neurologically depressed. Areas of the brain considered predisposed to hypotensive injury did not exhibit depressions in blood flow rate during hypotension more markedly than did other brain areas. The present results are interpreted as strong evidence against the “border zone” hypothesis.


1994 ◽  
Vol 14 (5) ◽  
pp. 877-881 ◽  
Author(s):  
Patrick Hylland ◽  
Göran E. Nilsson ◽  
Peter L. Lutz

The exceptional ability of the turtle brain to survive prolonged anoxia makes it a unique model for studying anoxic survival mechanisms. We have used epiillumination microscopy to record blood flow rate in venules on the cortical surface of turtles ( Trachemys scripta). During anoxia, blood flow rate increased 1.7 times after 45–75 min, whereupon it fell back, reaching preanoxic values after 115 min of anoxia. Topical super-fusion with adenosine (50 μ M) during normoxia caused a 3.8-fold increase in flow rate. Superfusing the brain with the adenosine receptor blocker aminophylline (250 μ M) totally inhibited the effects of both adenosine and anoxia, while aminophylline had no effect on normoxic flow rate. None of the treatments affected systemic blood pressure. These results indicate an initial adenosine-mediated increase in cerebral blood flow rate during anoxia, probably representing an emergency response before deep metabolic depression sets in.


2016 ◽  
Vol 3 (8) ◽  
pp. 160305 ◽  
Author(s):  
Roger S. Seymour ◽  
Vanya Bosiocic ◽  
Edward P. Snelling

The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens , increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.


1972 ◽  
Vol 50 (8) ◽  
pp. 774-783 ◽  
Author(s):  
Serge Carrière ◽  
Michel Desrosiers ◽  
Jacques Friborg ◽  
Michèle Gagnan Brunette

Furosemide (40 μg/min) was perfused directly into the renal artery of dogs in whom the femoral blood pressure was reduced (80 mm Hg) by aortic clamping above the renal arteries. This maneuver, which does not influence the intrarenal blood flow distribution, produced significant decreases of the urine volume, natriuresis, Ccreat, and CPAH, and prevented the marked diuresis normally produced by furosemide. Therefore the chances that systemic physiological changes occurred, secondary to large fluid movements, were minimized. In those conditions, however, furosemide produced a significant increase of the urine output and sodium excretion in the experimental kidney whereas Ccreat and CPAH were not affected. The outer cortical blood flow rate (ml/100 g-min) was modified neither by aortic constriction (562 ± 68 versus 569 ± 83) nor by the subsequent administration of furosemide (424 ± 70). The blood flow rate of the outer medulla in these three conditions remained unchanged (147 ± 52 versus 171 ± 44 versus 159 ± 54). The initial distribution of the radioactivity in each compartment remained comparable in the three conditions. In parallel with the results from the krypton-85 disappearance curves, the autoradiograms, silicone rubber casts, and EPAH did not suggest any change in the renal blood flow distribution secondary to furosemide administration.


1983 ◽  
Vol 6 (3) ◽  
pp. 127-130 ◽  
Author(s):  
C. Woffindin ◽  
N.A. Hoenich ◽  
D.N.S. Kerr

Data collected during the evaluation of a series of hemodialysers were analysed to see the effect of hematocrit on the clearance of urea and creatinine. All evaluations were performed on patients with a range of hematocrits with a mean close to 20%. The urea clearance of those in the upper half of the distribution curve (mean hematocrit 29.4%) was not significantly different from that of patients in the lower half of the distribution curve (mean hematocrit 16.9%) whether the clearance was studied at high or low blood flow rates and with hollow fibre or flat plate disposable hemodialysers. Likewise, there was no correlation between hematocrit and urea clearance by regression analysis. In contrast, the clearance of creatinine was affected by hematocrit being greater at lower hematocrit values. This difference was independent of blood flow rate and dialyser type and was confirmed by regression analysis.


Sign in / Sign up

Export Citation Format

Share Document