Changes in local cerebral blood flow following profound systemic hypotension

1976 ◽  
Vol 44 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Francis W. Gamache ◽  
Ronald E. Myers ◽  
Esteban Monell

✓ The authors studied local cerebral blood flow in monkeys rendered hypotensive by infusion of a ganglionic blocking agent. Application of the 14C-antipyrine method demonstrated that the blood flow: 1) normally varies reproducibly from one structure to another within the brain; 2) appears at its lowest level in all structures during the early minutes of a rapid-onset hypotension; 3) maintains the same general rank order of blood flow rate during hypotension as was present during normotension; and 4) returns to supranormal levels immediately following the rapid restoration of blood pressure. The values for local cerebral blood flow remain close-to-normal in some animals and diminish significantly in others during late recovery from hypotension. The close-to-normal values accompany uncomplicated recoveries while the diminished values appear in those animals which became neurologically depressed. Areas of the brain considered predisposed to hypotensive injury did not exhibit depressions in blood flow rate during hypotension more markedly than did other brain areas. The present results are interpreted as strong evidence against the “border zone” hypothesis.

1994 ◽  
Vol 14 (5) ◽  
pp. 877-881 ◽  
Author(s):  
Patrick Hylland ◽  
Göran E. Nilsson ◽  
Peter L. Lutz

The exceptional ability of the turtle brain to survive prolonged anoxia makes it a unique model for studying anoxic survival mechanisms. We have used epiillumination microscopy to record blood flow rate in venules on the cortical surface of turtles ( Trachemys scripta). During anoxia, blood flow rate increased 1.7 times after 45–75 min, whereupon it fell back, reaching preanoxic values after 115 min of anoxia. Topical super-fusion with adenosine (50 μ M) during normoxia caused a 3.8-fold increase in flow rate. Superfusing the brain with the adenosine receptor blocker aminophylline (250 μ M) totally inhibited the effects of both adenosine and anoxia, while aminophylline had no effect on normoxic flow rate. None of the treatments affected systemic blood pressure. These results indicate an initial adenosine-mediated increase in cerebral blood flow rate during anoxia, probably representing an emergency response before deep metabolic depression sets in.


1994 ◽  
Vol 267 (2) ◽  
pp. R590-R595 ◽  
Author(s):  
G. E. Nilsson ◽  
P. Hylland ◽  
C. O. Lofman

The crucian carp (Carassius carassius) has the rare ability to survive prolonged anoxia, indicating an extraordinary capacity for glycolytic ATP production, especially in a highly energy-consuming organ like the brain. For the brain to be able to increase its glycolytic flux during anoxia and profit from the large liver glycogen store, an increased glucose delivery from the blood would be expected. Nevertheless, the effect of anoxia on brain blood flow in crucian carp has never been studied previously. We have used epireflection microscopy to directly observe and measure blood flow rate on the brain surface (optic lobes) during normoxia and anoxia in crucian carp. We have also examined the possibility that adenosine participates in the regulation of brain blood flow rate in crucian carp. The results showed a 2.16-fold increase in brain blood flow rate during anoxia. A similar increase was seen after topical application of adenosine during normoxia, while adenosine was without effect during anoxia. Moreover, superfusing the brain with the adenosine receptor blocker aminophylline inhibited the effect of anoxia on brain blood flow rate, clearly suggesting a mediatory role of adenosine in the anoxia-induced increase in brain blood flow rate.


1988 ◽  
Vol 254 (2) ◽  
pp. H250-H257
Author(s):  
H. Schrock ◽  
W. Kuschinsky

Rats were kept on a low-K+ diet for 25 or 70 days. Local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were measured in 31 different structures of the brain by means of the [14C]iodoantipyrine and [14C]2-deoxy-D-glucose method. After 25 and 70 days of K+ depletion LCBF was decreased significantly in 27 and 30 structures, respectively, the average decrease being 19 and 25%. In contrast, average LCGU was not changed. Cisternal cerebrospinal fluid (CSF) K+ concentration decreased significantly from 2.65 +/- 0.02 mM in controls to 2.55 +/- 0.02 mM and 2.47 +/- 0.02 mM in the two treated groups (P less than 0.01). CSF [HCO3-], pH, and PCO2 were increased in K+-depleted animals. These data show that K+ depletion induces an increase in CSF pH and a decrease in CSF K+ concentration, both of which cause a reduction in cerebral blood flow. The increased CSF PCO2 is secondary to the reduction of blood flow, since brain metabolism and arterial PCO2 remained constant.


1994 ◽  
Vol 14 (5) ◽  
pp. 884-884

Local Cerebral Blood Flow During Hibernation, a Model of Natural Tolerance to “Cerebral Ischemia” Kai U. Frerichs, Charles Kennedy, Louis Sokoloff and John M. Hallenbeck [ originally published in Journal of Cerebral Blood Flow and Metabolism 1994;14(2):193–205] The weighted average cerebral blood flow in the brains of hibernating and nonhibernating ground squirrels appeared in three places in the article cited above. The numbers varied to some extent in each of the three places that they were displayed. The correct number for the active ground squirrel group was 62 ± 18 ml 100 g−1 min−1. The correct number for the hibernating group was 7 ± 4 ml 100 g−1 min−1. These numbers should be inserted on page 193 in the abstract so that the sentence would read, “Mean (± SD) mass-weighted CBF in the brain was 62 ± 18 ml 100 g−1 min−1 (n = 4) in the control group but was reduced to ischemic levels, 7 ± 4 ml 100 g−1 min−1 (n = 4), in the hibernating animals (p < 0.001).” The same numbers should be inserted into the sentence that begins at the bottom of page 198, “Average blood flow (± SD) in the brain as a whole in the hibernating animals was reduced to about 1/10 (7 ± 4 ml 100 g−1 min−1) of the level in active animals (62 ± 18 ml 100 g−1 min−1) (Table 4).” Finally, on page 201 at the bottom of Table 4 below “Weighted average in brain as a whole,” the readings should be 62 ± 18 for active and 7 ± 4 for hibernating.


1989 ◽  
Vol 9 (4) ◽  
pp. 556-562 ◽  
Author(s):  
David G. L. Van Wylen ◽  
T. S. Park ◽  
Rafael Rubio ◽  
Robert M. Berne

The purpose of this study was to determine the effects of local infusion of adenosine (ADO) and non-metabolized ADO analogues on local cerebral blood flow (CBF) and interstitial fluid (ISF) ADO levels. The brain dialysis technique was used to (a) deliver drugs locally to brain tissue, (b) estimate cerebral ISF ADO levels, and (c) measure local CBF (hydrogen clearance). Dialysis probes were implanted bilaterally in the caudate nuclei of ketamine-anesthetized rats. The probe on one side was perfused with artificial CSF while the contralateral probe was perfused with artificial CSF containing ADO ( n = 5), or the ADO agonists 2-chloroadenosine (2-CADO; n = 4) or 5'-N-ethylcarboxamide adenosine (NECA; n = 4). When ADO was included in the artificial CSF at 10−5, 10−4, or 10−3 M, a 30% increase in local CBF was detected only with 10−3 M ADO. During perfusion with ADO, dialysate inosine and hypoxanthine levels increased, indicating that the cells adjacent to the probe metabolized the exogenous ADO. With 2-CADO included in the artificial CSF at 10−6, 10−5, or 10−4 M, local CBF increased 18, 131, and 201%, respectively. Perfusion with artificial CSF containing 10−7, 10−6, or 10−5 M NECA resulted in a 35, 112, and 187% increase in local CBF, respectively. In a separate group of rats ( n = 6), perfusion with artificial CSF containing 10−6 M NECA resulted in a sustained twofold increase in local CBF and 40% decrease in dialysate adenosine concentration, both of which could be reversed by including 8-( p-sulfophenyl)-theophylline, an ADO receptor antagonist, in the artificial CSF. These results are consistent with the known vascular actions of ADO and ADO analogues and suggest that there is a basal level of ISF ADO that can be reduced by increased CBF and/or adenosine receptor activation.


2015 ◽  
Vol 35 (4) ◽  
pp. 648-654 ◽  
Author(s):  
Laleh Zarrinkoob ◽  
Khalid Ambarki ◽  
Anders Wåhlin ◽  
Richard Birgander ◽  
Anders Eklund ◽  
...  

High-resolution phase—contrast magnetic resonance imaging can now assess flow in proximal and distal cerebral arteries. The aim of this study was to describe how total cerebral blood flow (tCBF) is distributed into the vascular tree with regard to age, sex and anatomic variations. Forty-nine healthy young (mean 25 years) and 45 elderly (mean 71 years) individuals were included. Blood flow rate (BFR) in 21 intra- and extracerebral arteries was measured. Total cerebral blood flow was defined as BFR in the internal carotid plus vertebral arteries and mean cerebral perfusion as tCBF/brain volume. Carotid/vertebral distribution was 72%/28% and was not related to age, sex, or brain volume. Total cerebral blood flow (717±123 mL/min) was distributed to each side as follows: middle cerebral artery (MCA), 21%; distal MCA, 6%; anterior cerebral artery (ACA), 12%, distal ACA, 4%; ophthalmic artery, 2%; posterior cerebral artery (PCA), 8%; and 20% to basilar artery. Deviating distributions were observed in subjects with ‘fetal’ PCA. Blood flow rate in cerebral arteries decreased with increasing age ( P<0.05) but not in extracerebral arteries. Mean cerebral perfusion was higher in women (women: 61±8; men: 55±6 mL/min/100 mL, P<0.001). The study describes a new method to outline the flow profile of the cerebral vascular tree, including reference values, and should be used for grading the collateral flow system.


1980 ◽  
Vol 53 (4) ◽  
pp. 500-511 ◽  
Author(s):  
W. Lewelt ◽  
L. W. Jenkins ◽  
J. Douglas Miller

✓ To test the hypothesis that concussive brain injury impairs autoregulation of cerebral blood flow (CBF), 24 cats were subjected to hemorrhagic hypotension in 10-mm Hg increments while measurements were made of arterial and intracranial pressure, CBF, and arterial blood gases. Eight cats served as controls, while eight were subjected to mild fluid percussion injury of the brain (1.5 to 2.2 atmospheres) and eight to severe injury (2.8 to 4.8 atmospheres). Injury produced only transient changes in arterial and intracranial pressure, and no change in resting CBF. Impairment of autoregulation was found in injured animals, more pronounced in the severe-injury group. This could not be explained on the basis of intracranial hypertension, hypoxemia, hypercarbia, or brain damage localized to the area of the blood flow electrodes. It is, therefore, concluded that concussive brain injury produces a generalized loss of autoregulation for at least several hours following injury.


Sign in / Sign up

Export Citation Format

Share Document