scholarly journals Functional characterization of three flavonoid glycosyltransferases from Andrographis paniculata

2019 ◽  
Vol 6 (6) ◽  
pp. 190150 ◽  
Author(s):  
Yuan Li ◽  
Xin-Lin Li ◽  
Chang-Jiang-Sheng Lai ◽  
Rui-Shan Wang ◽  
Li-Ping Kang ◽  
...  

Andrographis paniculata is an important traditional medicinal herb in South and Southeast Asian countries with diverse pharmacological activities that contains various flavonoids and flavonoid glycosides. Glycosylation can transform aglycones into more stable, biologically active and structurally diverse glycosides. Here, we report three glycosyltransferases from the leaves of A. paniculata (ApUFGTs) that presented wide substrate spectra for flavonoid glycosylation and exhibited multi-site glycosylation on the substrate molecules. They acted on the 7-OH position of the A ring and were able to glycosylate several other different types of compounds. The biochemical properties and phylogenetic analysis of these glycosyltransferases were also investigated. This study provides a basis for further research on the cloning of genes involved in glycosylation from A. paniculata and offers opportunities for enhancing flavonoid glycoside production in heterologous hosts. These enzymes are expected to become effective tools for drug discovery and for the biosynthesis of derivatives via flavonoid glycosylation.

2021 ◽  
Vol 18 ◽  
Author(s):  
Vivek Srivastava

: In the present manuscript, we easily synthesized three different types of ionic liquid supported 3-quinuclidinone organocatalysts such as [PyAmEQ][BF4] (Py-CATALYST-1), [PyAmEQ][PF6] (Py-CATALYST-2), and [PyAmEQ][NTf2] (Py-CATALYST-3). After performing the careful characterization of the above catalysts with sophisticated analytical techniques, we utilized them as a catalyst to study the passive Morita-Baylis-Hillman reaction. The corresponding Morita-Baylis-Hillman adducts were easily isolated, followed by the simple ether extraction method. Moreover, the above protocol also promoted low catalyst loading, short reaction time, wide substrate scope, easy product, and catalyst recycling. We easily recycled the catalytic system for 5 runs with no noticeable loss in the chemical yield. Additionally, Py-CATALYST-3 was also used to prepare biologically active materials, i.e., N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivatives.


2020 ◽  
Vol 18 (9) ◽  
pp. 659-665
Author(s):  
Jian WANG ◽  
Hui-Xin LIN ◽  
Huan ZHAO ◽  
Juan GUO ◽  
Ping SU ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Roisin O'Connor ◽  
Lorna M. Cryan ◽  
Kieran Wynne ◽  
Andreas de Stefani ◽  
Desmond Fitzgerald ◽  
...  

Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.


2000 ◽  
Vol 74 (2) ◽  
pp. 702-709 ◽  
Author(s):  
Mike Flint ◽  
Jean Dubuisson ◽  
Catherine Maidens ◽  
Richard Harrop ◽  
Geoffrey R. Guile ◽  
...  

ABSTRACT The E2 protein of hepatitis C virus (HCV) is believed to be a virion surface glycoprotein that is a candidate for inclusion in an antiviral vaccine. A truncated soluble version of E2 has recently been shown to interact with CD81, suggesting that this protein may be a component of the receptor for HCV. When expressed in eukaryotic cells, a significant proportion of E2 forms misfolded aggregates. To analyze the specificity of interaction between E2 and CD81, the aggregated and monomeric forms of a truncated E2 glycoprotein (E2661) were separated by high-pressure liquid chromatography and analyzed for CD81 binding. Nonaggregated forms of E2 preferentially bound CD81 and a number of conformation-dependent monoclonal antibodies (MAbs). Furthermore, intracellular forms of E2661 were found to bind CD81 with greater affinity than the extracellular forms. Intracellular and secreted forms of E2661 were also found to differ in reactivity with MAbs and human sera, consistent with differences in antigenicity. Together, these data indicate that proper folding of E2 is important for its interaction with CD81 and that modifications of glycans can modulate this interaction. Identification of the biologically active forms of E2 will assist in the future design of vaccines to protect against HCV infection.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bangqiao Yin ◽  
Hengsen Gu ◽  
Xueyan Mo ◽  
Yue Xu ◽  
Bing Yan ◽  
...  

Abstract The products of bacterial β-glucosidases with favorable cold-adapted properties have industrial applications. A psychrophilic β-glucosidase gene named bglG from subtropical soil microorganism Exiguobacterium sp. GXG2 was isolated and characterized by function-based screening strategy. Results of multiple alignments showed that the derived protein BglG shared 45.7% identities with reviewed β-glucosidases in the UniProtKB/Swiss-Prot database. Functional characterization of the β-glucosidase BglG indicated that BglG was a 468 aa protein with a molecular weight of 53.2 kDa. The BglG showed the highest activity in pH 7.0 at 35 °C and exhibited consistently high levels of activity within low temperatures ranging from 5 to 35 °C. The BglG appeared to be a psychrophilic enzyme. The values of Km, Vmax, kcat, and kcat/Km of recombinant BglG toward ρNPG were 1.1 mM, 1.4 µg/mL/min, 12.7 s−1, and 11.5 mM/s, respectively. The specific enzyme activity of BglG was 12.14 U/mg. The metal ion of Ca2+ and Fe3+ could stimulate the activity of BglG, whereas Mn2+ inhibited the activity. The cold-adapted β-glucosidase BglG displayed remarkable biochemical properties, making it a potential candidate for future industrial applications.


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 204
Author(s):  
Yongzan Wei ◽  
Huayuan Mu ◽  
Guangzhao Xu ◽  
Yi Wang ◽  
Yang Li ◽  
...  

Grape (Vitis vinifera) produces a variety of secondary metabolites, which can enhance nutrients and flavor in fruit and wine. Uridine diphosphate-glycosyltransferases (UGTs) are primarily responsible for the availability of secondary metabolites by glycosylation modification. Here, a total of 228 putative UGTs were identified in V. vinifera, and VvUGTs were clustered into 15 groups (A to O) and unevenly distributed on 18 chromosomes. Diverse VvUGT members from 12 groups were transcribed, and they responded to different external stresses. More than 72% of VvUGT members were expressed at one or more stages of grape fruit development, and the expression levels of 34 VvUGT members increased gradually with fruit ripening. The VvUGT members of different groups may be involved in the synthesis and accumulation of flavonoid glycosides, glycosidically bound volatiles, and stilbenes. These results will provide guidance for further research on the functions and regulating mechanisms of UGT genes.


Sign in / Sign up

Export Citation Format

Share Document