scholarly journals Heritability and genetic correlations of personality, life history and morphology in the grey mouse lemur ( Microcebus murinus )

2019 ◽  
Vol 6 (10) ◽  
pp. 190632 ◽  
Author(s):  
Pauline B. Zablocki-Thomas ◽  
Anthony Herrel ◽  
Caitlin J. Karanewsky ◽  
Fabienne Aujard ◽  
Emmanuelle Pouydebat

The recent interest in animal personality has sparked a number of studies on the heritability of personality traits. Yet, how the sources variance these traits can be decomposed remains unclear. Moreover, whether genetic correlations with life-history traits, personality traits and other phenotypic traits exist as predicted by the pace-of-life syndrome hypothesis remains poorly understood. Our aim was to compare the heritability of personality, life-history and morphological traits and their potential genetic correlations in a small primate ( Microcebus murinus ). We performed an animal model analysis on six traits measured in a large sample of captive mouse lemurs ( N = 486). We chose two personality traits, two life-history traits and two morphological traits to (i) estimate the genetic and/or environmental contribution to their variance, and (ii) test for genetic correlations between these traits. We found modest narrow-sense heritability for personality traits, morphological traits and life-history traits. Other factors including maternal effects also influence the sources of variation in life-history and morphological traits. We found genetic correlations between emergence latency on the one hand and radius length and growth rate on the other hand. Emergence latency was also genetically correlated with birth weight and was influenced by maternal identity. These results provide insights into the influence of genes and maternal effects on the partitioning of sources of variation in personality, life-history and morphological traits in a captive primate model and suggest that the pace-of-life syndrome may be partly explained by genetic trait covariances.

Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1467-1483 ◽  
Author(s):  
David Houle ◽  
Bob Morikawa ◽  
Michael Lynch

Abstract We have reviewed the available data on VM, the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare VM values, we use three dimensionless quantities: mutational heritability, the mutational coefficient of variation, CVM; and the ratio of the standing genetic variance to VM, VG/VM. Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CVM. This is confirmed; life history traits have a median CVM value more than six times higher than that for morphological traits. VG/VM approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, VG/VM must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. VG/VM averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model.


2010 ◽  
Vol 365 (1560) ◽  
pp. 4051-4063 ◽  
Author(s):  
Denis Réale ◽  
Dany Garant ◽  
Murray M. Humphries ◽  
Patrick Bergeron ◽  
Vincent Careau ◽  
...  

The pace-of-life syndrome (POLS) hypothesis specifies that closely related species or populations experiencing different ecological conditions should differ in a suite of metabolic, hormonal and immunity traits that have coevolved with the life-history particularities related to these conditions. Surprisingly, two important dimensions of the POLS concept have been neglected: (i) despite increasing evidence for numerous connections between behavioural, physiological and life-history traits, behaviours have rarely been considered in the POLS yet; (ii) the POLS could easily be applied to the study of covariation among traits between individuals within a population. In this paper, we propose that consistent behavioural differences among individuals, or personality, covary with life history and physiological differences at the within-population, interpopulation and interspecific levels. We discuss how the POLS provides a heuristic framework in which personality studies can be integrated to address how variation in personality traits is maintained within populations.


2019 ◽  
Author(s):  
Jessica A. Haines ◽  
Sarah E. Nason ◽  
Alyshia M. M. Skurdal ◽  
Tenal Bourchier ◽  
Stan Boutin ◽  
...  

The pace of life syndrome hypothesis posits that personality traits (i.e., consistent individual differences in behaviour) are linked to life history and fitness. Specifically, fast-paced individuals are predicted to be proactive (i.e., active and aggressive) with an earlier age at first reproduction, a shorter lifespan, and a higher fecundity than slow-paced individuals. Environmental conditions and sex differences may be important in maintaining behavioural and life history variation in populations and may influence the covariance of personality with life history or lifetime fitness. However, these effects are rarely tested together. We investigated whether the occurrence of a resource pulse (called a mast year) during adulthood altered the associations between personality and life history traits or lifetime offspring production in adult North American red squirrels (Tamiasciurus hudsonicus). Despite accounting for environmental context during adulthood, we found no evidence of an overall pace-of-life syndrome in this population as personality was not associated with age at first reproduction or longevity in either sex. Males and females had similar activity levels, but females were more aggressive, potentially due to the fitness benefits of protecting their offspring from predation. In all females regardless of mast experience, there was no association between activity and lifetime pup production but there was a positive association between aggression and lifetime pup production. In males that experienced a mast there was a positive association between lifetime pup production and both activity and aggression. In males that did not experience a mast, there was no association between activity and lifetime pup production but a negative association between aggression and lifetime pup production. Lifetime recruit production in either sex was not influenced by activity or aggression regardless of mast experience. Overall, our results suggest that the infrequent occurrence of mast years may contribute to maintaining variation in personality traits in red squirrels.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


2019 ◽  
Vol 110 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Ned A Dochtermann ◽  
Tori Schwab ◽  
Monica Anderson Berdal ◽  
Jeremy Dalos ◽  
Raphaël Royauté

AbstractThe contribution of genetic variation to phenotypes is a central factor in whether and how populations respond to selection. The most common approach to estimating these influences is via the calculation of heritabilities, which summarize the contribution of genetic variation to phenotypic variation. Heritabilities also indicate the relative effect of genetic variation on phenotypes versus that of environmental sources of variation. For labile traits like behavioral responses, life history traits, and physiological responses, estimation of heritabilities is important as these traits are strongly influenced by the environment. Thus, knowing whether or not genetic variation is present within populations is necessary to understand whether or not these populations can evolve in response to selection. Here we report the results of a meta-analysis summarizing what we currently know about the heritability of behavior. Using phylogenetically controlled methods we assessed the average heritability of behavior (0.235)—which is similar to that reported in previous analyses of physiological and life history traits—and examined differences among taxa, behavioral classifications, and other biologically relevant factors. We found that there was considerable variation among behaviors as to how heritable they were, with migratory behaviors being the most heritable. Interestingly, we found no effect of phylogeny on estimates of heritability. These results suggest, first, that behavior may not be particularly unique in the degree to which it is influenced by factors other than genetics and, second, that those factors influencing whether a behavioral trait will have low or high heritability require further consideration.


2019 ◽  
Vol 30 (4) ◽  
pp. 1096-1105 ◽  
Author(s):  
Joe A Moschilla ◽  
Joseph L Tomkins ◽  
Leigh W Simmons

Abstract The pace-of-life syndrome (POLS) hypothesis considers an animal’s behavior, physiology, and life history as nonindependent components of a single integrated phenotype. However, frequent deviations from the expected correlations between POLS traits suggest that these relationships may be context, and potentially, sex dependent. To determine whether the sexes express distinct POLS trait covariance structures, we observed the behavior (mobility, latency to emerge from a shelter), physiology (mass-specific metabolic rate), and life history (life span, development time) of male and female Australian field crickets (Teleogryllus oceanicus). Path analysis modeling suggested that POLS trait covariation differed between the sexes. Although neither sex displayed the complete integration of traits predicted by the POLS hypothesis, females did display greater overall integration with a significant negative correlation between metabolic rate and risk-taking behavior but with life-history traits varying independently. In males, however, there was no clear association between traits. These results suggest that T. oceanicus do indeed display sex-specific trait covariance structures, emphasizing the importance of acknowledging sex in assessments of POLS.


Sign in / Sign up

Export Citation Format

Share Document