scholarly journals Compressor performance modelling method based on support vector machine nonlinear regression algorithm

2020 ◽  
Vol 7 (1) ◽  
pp. 191596
Author(s):  
Yulong Ying ◽  
Siyu Xu ◽  
Jingchao Li ◽  
Bin Zhang

To overcome the difficulty of having only part of compressor characteristic maps including on-design operating point, and accurately calculate compressor thermodynamic performance under variable working conditions, this paper proposes a novel compressor performance modelling method based on support vector machine nonlinear regression algorithm. It is compared with the other three neural network algorithms (i.e. back propagation (BP), radial basis function (RBF) and Elman neural networks) from the perspective of interpolation and extrapolation accuracy as well as calculation time, to prove the validity of the proposed method. Application analyses indicate that the proposed method has better interpolation and extrapolation performance than the other three neural networks. In terms of flow characteristic map representation, the root mean square error (RMSE) of the extrapolation performance at higher and lower speed operating area by the proposed method is 0.89% and 2.57%, respectively. And the total RMSE by the proposed method is 2.72%, which is more accurate by 47% than the Elman algorithm. For efficiency characteristic map representation, the RMSE of the extrapolation performance at higher and lower speed operating area by the proposed method is 2.85% and 1.22%, respectively. And the total RMSE by the proposed method is 1.81%, which is more accurate by 35% than the BP algorithm. Moreover, the proposed method has better real-time performance compared with the other three neural network algorithms.

2018 ◽  
Vol 28 (05) ◽  
pp. 1750021 ◽  
Author(s):  
Alessandra M. Soares ◽  
Bruno J. T. Fernandes ◽  
Carmelo J. A. Bastos-Filho

The Pyramidal Neural Networks (PNN) are an example of a successful recently proposed model inspired by the human visual system and deep learning theory. PNNs are applied to computer vision and based on the concept of receptive fields. This paper proposes a variation of PNN, named here as Structured Pyramidal Neural Network (SPNN). SPNN has self-adaptive variable receptive fields, while the original PNNs rely on the same size for the fields of all neurons, which limits the model since it is not possible to put more computing resources in a particular region of the image. Another limitation of the original approach is the need to define values for a reasonable number of parameters, which can turn difficult the application of PNNs in contexts in which the user does not have experience. On the other hand, SPNN has a fewer number of parameters. Its structure is determined using a novel method with Delaunay Triangulation and k-means clustering. SPNN achieved better results than PNNs and similar performance when compared to Convolutional Neural Network (CNN) and Support Vector Machine (SVM), but using lower memory capacity and processing time.


2020 ◽  
Author(s):  
V. Vijayasarveswari ◽  
A.M. Andrew ◽  
M. Jusoh ◽  
T. Sabapathy ◽  
R.A.A. Raof ◽  
...  

AbstractBreast cancer is the most common cancer among women and it is one of the main causes of death for women worldwide. To attain an optimum medical treatment for breast cancer, an early breast cancer detection is crucial. This paper proposes a multistage feature selection method that extracts statistically significant features for breast cancer size detection using proposed data normalization techniques. Ultra-wideband (UWB) signals, controlled using microcontroller are transmitted via an antenna from one end of the breast phantom and are received on the other end. These ultra-wideband analogue signals are represented in both time and frequency domain. The preprocessed digital data is passed to the proposed multi-stage feature selection algorithm. This algorithm has four selection stages. It comprises of data normalization methods, feature extraction, data dimensional reduction and feature fusion. The output data is fused together to form the proposed datasets, namely, 8-HybridFeature, 9-HybridFeature and 10-HybridFeature datasets. The classification performance of these datasets is tested using the Support Vector Machine, Probabilistic Neural Network and Naïve Bayes classifiers for breast cancer size classification. The research findings indicate that the 8-HybridFeature dataset performs better in comparison to the other two datasets. For the 8-HybridFeature dataset, the Naïve Bayes classifier (91.98%) outperformed the Support Vector Machine (90.44%) and Probabilistic Neural Network (80.05%) classifiers in terms of classification accuracy. The finalized method is tested and visualized in the MATLAB based 2D and 3D environment.


2021 ◽  
Vol 11 (2) ◽  
pp. 1514-1525
Author(s):  
Sai Tejeshwar Reddy T

Aim: The aim of the work is to perform android malware detection using Structured and Unstructured data by comparing Neural Network algorithms and SVM. Materials and Methods: consider two groups such as Support Vector Machine and Neural Network. For each algorithm take N=10 samples from the dataset collected and perform two iterations on each algorithm to identify the Malware Detection. Result: The accuracy results of the Neural Network model has potential up to (82.91%) and the Support Vector Machine algorithm has an accuracy of (79.67%) for Android malware detection with the significance value of (p=0.007). Conclusion: classification of android malware detection using Neural Network algorithm shows better accuracy than SVM.


2018 ◽  
Vol 4 (10) ◽  
pp. 6
Author(s):  
Shivangi Bhargava ◽  
Dr. Shivnath Ghosh

News popularity is the maximum growth of attention given for particular news article. The popularity of online news depends on various factors such as the number of social media, the number of visitor comments, the number of Likes, etc. It is therefore necessary to build an automatic decision support system to predict the popularity of the news as it will help in business intelligence too. The work presented in this study aims to find the best model to predict the popularity of online news using machine learning methods. In this work, the result analysis is performed by applying Co-relation algorithm, particle swarm optimization and principal component analysis. For performance evaluation support vector machine, naïve bayes, k-nearest neighbor and neural network classifiers are used to classify the popular and unpopular data. From the experimental results, it is observed that support vector machine and naïve bayes outperforms better with co-relation algorithm as well as k-NN and neural network outperforms better with particle swarm optimization.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 636
Author(s):  
Alhassan Mabrouk ◽  
Rebeca P. Díaz Redondo ◽  
Mohammed Kayed

Recently, it has been found that e-commerce (EC) websites provide a large amount of useful information that exceed the human cognitive processing capacity. In order to help customers in comparing alternatives when buying a product, previous research authors have designed opinion summarization systems based on customer reviews. They ignored the template information provided by manufacturers, although its descriptive information has the most useful product characteristics and texts are linguistically correct, unlike reviews. Therefore, this paper proposes a methodology coined as SEOpinion (summarization and exploration of opinions) to summarize aspects and spot opinion(s) regarding them using a combination of template information with customer reviews in two main phases. First, the hierarchical aspect extraction (HAE) phase creates a hierarchy of aspects from the template. Subsequently, the hierarchical aspect-based opinion summarization (HAOS) phase enriches this hierarchy with customers’ opinions to be shown to other potential buyers. To test the feasibility of using deep learning-based BERT techniques with our approach, we created a corpus by gathering information from the top five EC websites for laptops. The experimental results showed that recurrent neural network (RNN) achieved better results (77.4% and 82.6% in terms of F1-measure for the first and second phases, respectively) than the convolutional neural network (CNN) and the support vector machine (SVM) technique.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Sign in / Sign up

Export Citation Format

Share Document