scholarly journals Dynamic spatio-temporal patterns of metapopulation occupancy in patchy habitats

2021 ◽  
Vol 8 (1) ◽  
pp. 201309
Author(s):  
L. E. Bertassello ◽  
E. Bertuzzo ◽  
G. Botter ◽  
J. W. Jawitz ◽  
A. F. Aubeneau ◽  
...  

Spatio-temporal dynamics in habitat suitability and connectivity among mosaics of heterogeneous wetlands are critical for biological diversity and species persistence in aquatic patchy landscapes. Despite the recognized importance of stochastic hydroclimatic forcing in driving wetlandscape hydrological dynamics, linking such effects to emergent dynamics of metapopulation poses significant challenges. To fill this gap, we propose here a dynamic stochastic patch occupancy model (SPOM), which links parsimonious hydrological and ecological models to simulate spatio-temporal patterns in species occupancy in wetlandscapes. Our work aims to place ecological studies of patchy habitats into a proper hydrologic and climatic framework to improve the knowledge about metapopulation shifts in response to climate-driven changes in wetlandscapes. We applied the dynamic version of the SPOM (D-SPOM) framework in two wetlandscapes in the US with contrasting landscape and climate properties. Our results illustrate that explicit consideration of the temporal dimension proposed in the D-SPOM is important to interpret local- and landscape-scale patterns of habitat suitability and metapopulation occupancy. Our analyses show that spatio-temporal dynamics of patch suitability and accessibility, driven by the stochasticity in hydroclimatic forcing, influence metapopulation occupancy and the topological metrics of the emergent wetlandscape dispersal network. D-SPOM simulations also reveal that the extinction risk in dynamic wetlandscapes is exacerbated by extended dry periods when suitable habitat decreases, hence limiting successful patch colonization and exacerbating metapopulation extinction risks. The proposed framework is not restricted only to wetland studies but could also be applied to examine metapopulation dynamics in other types of patchy habitats subjected to stochastic external disturbances.

Author(s):  
Wentao Yang ◽  
Min Deng ◽  
Chaokui Li ◽  
Jincai Huang

Understanding the spatio-temporal characteristics or patterns of the 2019 novel coronavirus (2019-nCoV) epidemic is critical in effectively preventing and controlling this epidemic. However, no research analyzed the spatial dependency and temporal dynamics of 2019-nCoV. Consequently, this research aims to detect the spatio-temporal patterns of the 2019-nCoV epidemic using spatio-temporal analysis methods at the county level in Hubei province. The Mann–Kendall and Pettitt methods were used to identify the temporal trends and abrupt changes in the time series of daily new confirmed cases, respectively. The local Moran’s I index was applied to uncover the spatial patterns of the incidence rate, including spatial clusters and outliers. On the basis of the data from January 26 to February 11, 2020, we found that there were 11 areas with different types of temporal patterns of daily new confirmed cases. The pattern characterized by an increasing trend and abrupt change is mainly attributed to the improvement in the ability to diagnose the disease. Spatial clusters with high incidence rates during the period were concentrated in Wuhan Metropolitan Area due to the high intensity of spatial interaction of the population. Therefore, enhancing the ability to diagnose the disease and controlling the movement of the population can be confirmed as effective measures to prevent and control the regional outbreak of the epidemic.


2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
Carl Tamario ◽  
Erik Degerman ◽  
Daniela Polic ◽  
Petter Tibblin ◽  
Anders Forsman

Ecological theory postulates that the size and isolation of habitat patches impact the colonization/extinction dynamics that determine community species richness and population persistence. Given the key role of lotic habitats for life-history completion in rheophilic fish, evaluating how the distribution of swift-flowing habitats affects the abundance and dynamics of subpopulations is essential. Using extensive electrofishing data, we show that merging island biogeography with meta-population theory, where lotic habitats are considered as islands in a lentic matrix, can explain spatio-temporal variation in occurrence and density of brown trout ( Salmo trutta ). Subpopulations in larger and less isolated lotic habitat patches had higher average densities and smaller between-year density fluctuations. Larger lotic habitat patches also had a lower predicted risk of excessive zero-catches, indicative of lower extinction risk. Trout density further increased with distance from the edge of adjacent lentic habitats with predator ( Esox lucius ) presence, suggesting that edge- and matrix-related mortality contributes to the observed patterns. These results can inform the prioritization of sites for habitat restoration, dam removal and reintroduction by highlighting the role of suitable habitat size and connectivity in population abundance and stability for riverine fish populations.


2013 ◽  
Vol 41 (3) ◽  
pp. 253-264 ◽  
Author(s):  
SADIA E. AHMED ◽  
ROBERT M. EWERS ◽  
MATTHEW J. SMITH

SUMMARYThere is burgeoning interest in predicting road development because of the wide ranging important socioeconomic and environmental issues that roads present, including the close links between road development, deforestation and biodiversity loss. This is especially the case in developing nations, which are high in natural resources, where road development is rapid and often not centrally managed. Characterization of large scale spatio-temporal patterns in road network development has been greatly overlooked to date. This paper examines the spatio-temporal dynamics of road density across the Brazilian Amazon and assesses the relative contributions of local versus neighbourhood effects for temporal changes in road density at regional scales. To achieve this, a combination of statistical analyses and model-data fusion techniques inspired by studies of spatio-temporal dynamics of populations in ecology and epidemiology were used. The emergent development may be approximated by local growth that is logistic through time and directional dispersal. The current rates and dominant direction of development may be inferred, by assuming that roads develop at a rate of 55 km per year. Large areas of the Amazon will be subject to extensive anthropogenic change should the observed patterns of road development continue.


2020 ◽  
Author(s):  
Leonardo Enrico Bertassello ◽  
James Jawtiz ◽  
Enrico Bertuzzo ◽  
Gianluca Botter ◽  
Jason Hoverman ◽  
...  

<p>Dynamic internal feedbacks and stochastic external shocks drive the spatial organization and heterogeneity of patchy habitats, and thus the temporal variability of patch suitability and accessibility. Such spatiotemporal shifts impact species dispersal among patches and metapopulation persistence. Here, we extended the widely recognized concepts of patch-occupancy and metapopulation capacity from static to dynamic patchy habitats, with isolated wetlands embedded in uplands as the case study. We present a new metapopulation modeling approach by linking a hydrological model for wetland variability with a dynamic stochastic patch-occupancy model. In two case study wetlandscapes, we evaluate (1) spatiotemporal dynamics of wetland hydrologic regimes, and patch suitability and connectivity driven by stochastic hydroclimatic forcing, and (2) spatiotemporal patterns of patch occupancy and metapopulation dispersal dynamics. Our modeling results reveal the importance of specific connected patches that serve as persistent hubs and form the backbone of dispersal corridors to support species dispersal in fragmented dynamic landscapes. Our analyses reveal that the interplay between stochastic hydroclimatic forcing and patchy habitat structure could drive species to extinction when specific thresholds are crossed.</p>


2020 ◽  
Author(s):  
Tailin Li ◽  
Nina Noreika ◽  
Jakub Jeřábek ◽  
Josef Krasa ◽  
David Zumr ◽  
...  

<p>Many studies in recent years have focused on spatio-temporal variability of soil moisture and its value in hydrology and agriculture. The highly dynamic of soil moisture is controlled by soil properties, topography, landuse, climate conditions, and anthropogenic impacts. However, the understanding of soil moisture dynamics is limited by measurement restrictions. The aim of this study is to analyse spatio-temporal patterns of soil moisture using various soil moisture monitoring techniques and numerical modelling approaches that have been developed for application at differing scales at the Nucice experimental catchment (0.53 km<sup>2</sup>), which is located just outside of Prague, the Czech Republic.</p><p>The experimental catchment is dominated by agricultural activities. To identify spatio-temporal patterns in the catchment, we have implemented shallow soil moisture measurements at point-scale, hillslope-scale, and catchment-scale. We have deployed FDR (frequency domain reflectometry) sensors at different depths for point-scale measurements. The monitoring of hillslope-scale and catchment-scale have been mostly accomplished by field surveys with HydroSense II sensors. Subsequently, we have applied geostatistical analyses (Kriging and inverse distance weighting interpolation) for the measured soil moisture data to discover spatial patterns in soil moisture across the catchment. Besides, numerical models Hydrus (1D and 2D), MIKE-SHE, and SWAT have been set up at this study site. These models have been calibrated with event-based data and soil moisture measurements, which present a better image of the hydrological processes and spatio-temporal dynamics of soil moisture at various scales. The modelling outcomes have not only fit agreeably with the observed discharge and the temporal dynamics of soil moisture but have also identified wet zones along hillslopes.</p><p>Further research will intensify the soil moisture monitoring at the catchment-scale by using remote sensing and Comsic-ray soil moisture probes. Also, anthropogenic impacts (e.g. influence of wheel track) should be considered in the modelling approach. Ultimately, we should be able to understand and predict the spatio-temporal dynamics of soil moisture in small scale agricultural catchments under different climate conditions.</p><p>This research has been supported by project H2020 No. 773903 SHui, focused on water scarcity in European and Chinese cropping systems.</p>


2017 ◽  
Vol 24 (4) ◽  
pp. 599-611 ◽  
Author(s):  
Ankit Agarwal ◽  
Norbert Marwan ◽  
Maheswaran Rathinasamy ◽  
Bruno Merz ◽  
Jürgen Kurths

Abstract. The temporal dynamics of climate processes are spread across different timescales and, as such, the study of these processes at only one selected timescale might not reveal the complete mechanisms and interactions within and between the (sub-)processes. To capture the non-linear interactions between climatic events, the method of event synchronization has found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction to analysing the time series at one reference timescale only. The study of event synchronization at multiple scales would be of great interest to comprehend the dynamics of the investigated climate processes. In this paper, the wavelet-based multi-scale event synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are used extensively to comprehend multi-scale processes and the dynamics of processes across various timescales. The proposed method allows the study of spatio-temporal patterns across different timescales. The method is tested on synthetic and real-world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture relationships that exist between processes at different timescales.


2010 ◽  
Vol 365 (1558) ◽  
pp. 3633-3643 ◽  
Author(s):  
Ethan P. White ◽  
S. K. Morgan Ernest ◽  
Peter B. Adler ◽  
Allen H. Hurlbert ◽  
S. Kathleen Lyons

Understanding species richness patterns represents one of the most fundamental problems in ecology. Most research in this area has focused on spatial gradients of species richness, with a smaller area of emphasis dedicated to understanding the temporal dynamics of richness. However, few attempts have been made to understand the linkages between the spatial and temporal patterns related to richness. Here, we argue that spatial and temporal richness patterns and the processes that drive them are inherently linked, and that our understanding of richness will be substantially improved by considering them simultaneously. The species–time–area relationship provides a case in point: successful description of the empirical spatio-temporal pattern led to a rapid development and testing of new theories. Other areas of research on species richness could also benefit from an explicitly spatio-temporal approach, and we suggest future directions for understanding the processes common to these two traditionally isolated fields of research.


2011 ◽  
Vol 23 (7) ◽  
pp. 1609-1623 ◽  
Author(s):  
Andreea Oliviana Diaconescu ◽  
Claude Alain ◽  
Anthony Randal McIntosh

The present study examined the modality specificity and spatio-temporal dynamics of “what” and “where” preparatory processes in anticipation of auditory and visual targets using ERPs and a cue–target paradigm. Participants were presented with an auditory (Experiment 1) or a visual (Experiment 2) cue that signaled them to attend to the identity or location of an upcoming auditory or visual target. In both experiments, participants responded faster to the location compared to the identity conditions. Multivariate spatio-temporal partial least square (ST-PLS) analysis of the scalp-recorded data revealed supramodal “where” preparatory processes between 300–600 msec and 600–1200 msec at central and posterior parietal electrode sites in anticipation of both auditory and visual targets. Furthermore, preparation for pitch processing was captured at modality-specific temporal regions between 300 and 700 msec, and preparation for shape processing was detected at occipital electrode sites between 700 and 1150 msec. The spatio-temporal patterns noted above were replicated when a visual cue signaled the upcoming response (Experiment 2). Pitch or shape preparation exhibited modality-dependent spatio-temporal patterns, whereas preparation for target localization was associated with larger amplitude deflections at multimodal, centro-parietal sites preceding both auditory and visual targets. Using a novel paradigm, the study supports the notion of a division of labor in the auditory and visual pathways following both auditory and visual cues that signal identity or location response preparation to upcoming auditory or visual targets.


2019 ◽  
Author(s):  
Alexander J. Turner ◽  
Philipp Köhler ◽  
Troy S. Magney ◽  
Christian Frankenberg ◽  
Inez Fung ◽  
...  

Abstract. Solar-Induced chlorophyll Fluorescence (SIF) has been shown to be a powerful proxy for photosynthesis and gross primary productivity (GPP). The recently launched TROPOspheric Monitoring Instrument (TROPOMI) features the required spectral resolution and signal-to-noise ratio to retrieve SIF from space. Here we present an oversampling and downscaling method to obtain 500-m spatial resolution SIF over California. We report daily values based on a 14-day window. TROPOMI SIF data show a strong correspondence with daily GPP estimates at AmeriFlux sites across multiple ecosystems in California. We find a linear relationship between SIF and GPP that is largely invariant across ecosystems with an intercept that is not significantly different from zero. Measurements of SIF from TROPOMI agree with MODIS vegetation indices (NDVI, EVI, and NIRv) at annual timescales but indicate different temporal dynamics at monthly and daily timescales. TROPOMI SIF data show a double peak in the seasonality of photosynthesis, a feature that is not present in the MODIS vegetation indices. The different seasonality in the vegetation indices may be due to a clear-sky bias in the vegetation indices, whereas SIF has a low sensitivity to clouds and can detect the downregulation of photosynthesis even when plants appear green. We further decompose the spatio-temporal patterns in the SIF data based on land cover. The double peak in the seasonality of California's photosynthesis is due to two processes that are out of phase: grasses, chaparral, and oak savanna ecosystems show an April maximum while evergreen forests peak in June. An empirical orthogonal function (EOF) analysis corroborates the phase offset and spatial patterns driving the double peak. The EOF analysis further indicates that two spatio-temporal patterns explain 84 % of the variability in the SIF data. Results shown here are promising for obtaining global GPP at sub-kilometer spatial scales and identifying the processes driving carbon uptake.


Sign in / Sign up

Export Citation Format

Share Document