scholarly journals The magnitude of the gyromagnetic ratio

The accurate experiments of Chattock and Bates prove that the angular momentum arising in a ferromagnetic substance from unit change in its magnetic moment is very nearly, if not exactly, one half the value 2 m/e = 1.13 X 10 -7 , which seemed to me the most likely when I first discussed this effect. This conclusion is supported by the fact that the improvements which have been introduced into this subject by successive experimenters in recent years have led to values showing a strong tendency to settle at the same limit m/e = 5.65 X 10 -8 . This value is also in general agreement with that deduced by Barnett from experiments on the converse effect. It seems desirable therefore to reconsider the interpretation of this ratio. The higher value 2 m/e is obtained by making rather definite assumptions, which evidently require modification, as to the nature of the phenomena. These assumptions are that the process of magnetization involves the turning of electron orbits, and that nothing else which may occur has any important influence on the phenomena. The inertia of the electrons is assumed to be entirely of the type which controls the deflection of a beam of cathode rays by a magnetic field, and any change in the motion of the positively charged part of the atom is disregarded. These assumptions are essentially the same as those of the theories of Langevin and Weiss which have been successful in dealing with purely magnetic phenomena.

1968 ◽  
Vol 23 (12) ◽  
pp. 1911-1913
Author(s):  
Siegfried Hess

The influence of a magnetic field on the diffusion of Brownian particles with a magnetic moment parallel to their internal angular momentum is discussed. Starting point is a generalized Fokker-Planck equation. Application of the moment method leads to a set of transport-relaxation equations. From them the diffusion tensor depending on the external field is inferred.


2019 ◽  
Vol 488 (4) ◽  
pp. 5713-5727
Author(s):  
Kuldeep Singh ◽  
Indranil Chattopadhyay

ABSTRACT We study relativistic magnetized outflows using relativistic equation of state having variable adiabatic index (Γ) and composition parameter (ξ). We study the outflow in special relativistic magnetohydrodynamic regime, from sub-Alfvénic to super-fast domain. We showed that, after the solution crosses the fast point, magnetic field collimates the flow and may form a collimation-shock due to magnetic field pinching/squeezing. Such fast, collimated outflows may be considered as astrophysical jets. Depending on parameters, the terminal Lorentz factors of an electron–proton outflow can comfortably exceed few tens. We showed that due to the transfer of angular momentum from the field to the matter, the azimuthal velocity of the outflow may flip sign. We also study the effect of composition (ξ) on such magnetized outflows. We showed that relativistic outflows are affected by the location of the Alfvén point, the polar angle at the Alfvén point and also the angle subtended by the field lines with the equatorial plane, but also on the composition of the flow. The pair dominated flow experiences impressive acceleration and is hotter than electron–proton flow.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


1969 ◽  
Vol 3 (2) ◽  
pp. 255-267 ◽  
Author(s):  
M. P. Srivastava ◽  
P. K. Bhat

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.


The following communication is formally a complement to one published in the 'Proceedings' of the Society on "The Effect of the Magneton on the Scattering of α-Rays." In the present paper the more general case of a central positively charged nucleus possessing mass and a magnetic moment is considered. The case is treated as if the mass of the nucleus is so large compared with that of the revolving particle that it may be regarded as fixed. It is, therefore, not directly applicable when the revolving body is an α-particle except in cases where the central mass is large compared with that of the hydrogen atom. It is shown later what modification is needed when the motion of the nucleus is not large enough to affect its magnetic quality. The former paper was suggested by certain theories relating to the scattering of α and β-particles by matter. In the present, however, the chief interest lies in the discussion of the nature and properties of the various orbits, more especially of such as do not extend to infinity, or as they may be called "local orbits." In both cases the motion in the equatorial plane of the magneton alone is considered.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850011
Author(s):  
Zeinab Rezaei

In this work, we calculate the neutron anomalous magnetic moment (AMM) supposing that this value can depend on the density and magnetic field of the system. We employ the lowest-order constraint variation (LOCV) method and [Formula: see text] nuclear potential to calculate the medium dependency of the neutron AMM. It is confirmed that the neutron AMM increases by increasing the density, while it decreases as the magnetic field grows. The energy and equation of state for the system have also been investigated.


Sign in / Sign up

Export Citation Format

Share Document