scholarly journals Study of relativistic magnetized outflows with relativistic equation of state

2019 ◽  
Vol 488 (4) ◽  
pp. 5713-5727
Author(s):  
Kuldeep Singh ◽  
Indranil Chattopadhyay

ABSTRACT We study relativistic magnetized outflows using relativistic equation of state having variable adiabatic index (Γ) and composition parameter (ξ). We study the outflow in special relativistic magnetohydrodynamic regime, from sub-Alfvénic to super-fast domain. We showed that, after the solution crosses the fast point, magnetic field collimates the flow and may form a collimation-shock due to magnetic field pinching/squeezing. Such fast, collimated outflows may be considered as astrophysical jets. Depending on parameters, the terminal Lorentz factors of an electron–proton outflow can comfortably exceed few tens. We showed that due to the transfer of angular momentum from the field to the matter, the azimuthal velocity of the outflow may flip sign. We also study the effect of composition (ξ) on such magnetized outflows. We showed that relativistic outflows are affected by the location of the Alfvén point, the polar angle at the Alfvén point and also the angle subtended by the field lines with the equatorial plane, but also on the composition of the flow. The pair dominated flow experiences impressive acceleration and is hotter than electron–proton flow.

1993 ◽  
Vol 157 ◽  
pp. 367-371 ◽  
Author(s):  
A. Shukurov ◽  
D.D. Sokoloff

The origin of a regular magnetic field in astrophysical jets is discussed. It is shown that jet plasma flow can generate a magnetic field provided the streamlines are helical. The dynamo of this type, known as the screw dynamo, generates magnetic fields with the dominant azimuthal wave number m = 1 whose field lines also have a helical shape. The field concentrates into a relatively thin cylindrical shell and its configuration is favorable for the collimation and confinement of the jet plasma.


2020 ◽  
Vol 492 (4) ◽  
pp. 4884-4891 ◽  
Author(s):  
Ya N Istomin ◽  
A A Gunya

ABSTRACT Centrifugal acceleration is due to the rotating poloidal magnetic field in the magnetosphere that creates the electric field which is orthogonal to the magnetic field. Charged particles with finite cyclotron radii can move along the electric field and receive energy. Centrifugal acceleration pushes particles to the periphery, where their azimuthal velocity reaches the speed of light. We calculated particle trajectories by numerical and analytical methods. The maximum obtained energies depend on the parameter of the particle magnetization κ, which is the ratio of rotation frequency of magnetic field lines in the magnetosphere ΩF to non-relativistic cyclotron frequency of particles ωc, κ = ΩF/ωc <<1, and on the parameter α which is the ratio of toroidal magnetic field BT to the poloidal one BP, α = BT/BP. It is shown that for small toroidal fields, α < κ1/4, the maximum Lorentz factor γm is only the square root of magnetization, γm = κ−1/2, while for large toroidal fields, α > κ1/4, the energy increases significantly, γm = κ−2/3. However, the maximum possible acceleration, γm = κ−1, is not achieved in the magnetosphere. For a number of active galactic nuclei, such as M87, maximum values of Lorentz factor for accelerated protons are found. Also, for special case of Sgr. A*, estimations of the maximum proton energy and its energy flux are obtained. They are in agreement with experimental data obtained by HESS Cherenkov telescope.


1997 ◽  
Vol 163 ◽  
pp. 692-692
Author(s):  
John Contopoulos ◽  
Arieh Königl

AbstractCentrifugally driven winds from the surfaces of magnetized accretion disks are a leading candidate for the origin of bipolar outflows and have also been recognized as an attractive mechanism for removing the angular momentum of the accreted matter. The origin of the open magnetic field lines that thread the disk in this scenario is, however, still uncertain. One possibility is that the field lines are transported through the disk, but previous studies have shown that this process is inefficient in disks with turbulent viscosity and diffusivity. Here we examine whether the efficiency can be increased if angular momentum is transported from the disk surfaces by large-scale magnetic fields instead of radially by viscous stresses. In this picture, the removal of angular momentum is associated with the establishment of a global poloidal electric current driven by the radial EMF in the disc, and it does not necessarily need to involve super-Alfvénic outflows. We address this problem in the context of protostellar systems and present representative solutions of the time evolution of a resistive disk that is initially threaded by a uniform vertical field anchored at a large distance from its surfaces. We assume that the angular momentum transport in the disk is controlled by the large-scale magnetic field and take into account the influence of the field on the disk structure.


The energy loss from the neutron star - as inferred from the secular increase in rotation period - is much greater than that emitted in either the radio or the other observed wavelengths. A primary motivation of magnetospheric theory is to trace the mode in which this energy and the associated angular momentum are in fact carried off from active pulsars. This review concentrates on the special case in which the magnetic and rotation axes are aligned. Electrons emitted from the polar caps are accelerated to highly relativistic energies by the electric force and simultaneously pick up angular momentum from the magnetic torque. Some process of angular momentum dissipation occurring beyond the light-cylinder is then required, both to yield the continuous spin-down of the star, and also to allow the electrons to cross magnetic field lines and so complete their circuits back to the star. Within the framework of classical physics, this could occur if most of the spin-down energy is lost through incoherent photon emission in an equatorial domain beyond the lightcylinder, but this would generate y-radiation far in excess of that observed. Transport away of the angular momentum via a relativistic wind requires the generation of a quasi-neutral plasma. Gamma-rays emitted by outflowing electrons will produce electron-positron pairs in the strong magnetic field near the star, and highly energetic electrons returning to the star may also generate a mixed plasma by pair production or by surface spallation. Coupling with the circulating primary electron current may then ensure that the dominant angular momentum loss is via the wind rather than through photon emission.


1995 ◽  
Vol 299 ◽  
pp. 153-186 ◽  
Author(s):  
P. A. Davidson

It is well known that the imposition of a static magnetic field tends to suppress motion in an electrically conducting liquid. Here we look at the magnetic damping of liquid-mental flows where the Reynolds number is large and the magnetic Reynolds number is small. The magnetic field is taken as uniform and the fluid is either infinite in extent or else bounded by an electrically insulating surface S. Under these conditions, we find that three general principles govern the flow. First, the Lorentz force destroys kinetic energy but does not alter the net linear momentum of the fluid, nor does it change the component of angular momentum parallel to B. In certain flows, this implies that momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow in such a way that the global Joule dissipation, D, decreases, and this decline in D is even more rapid than the corresponding fall in global kinetic energy, E. (Note that both D and E are quadratic in u). Third, this decline in relative dissipation, D / E, is essential to conserving momentum, and is achieved by propagating linear or angular momentum out along the magnetic field lines. In fact, this spreading of momentum along the B-lines is a diffusive process, familiar in the context of MHD turbulence. We illustrate these three principles with the aid of a number of specific examples. In increasing order of complexity we look at a spatially uniform jet evolving in time, a three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both space and time. We start with a spatially uniform jet which is dissipated by the sudden application of a transverse magnetic field. This simple (perhaps even trivial) example provides a clear illustration of our three general principles. It also provides a useful stepping-stone to our second example of a steady three-dimensional jet evolving in space. Unlike the two-dimensional jets studied by previous investigators, a three-dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section deforms in such a way that the momentum flux of the jet is conserved, despite a continual decline in its energy flux. We conclude with a discussion of magnetic damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot destroy the motion, but rather rearranges the angular momentum of the flow so as to reduce the global kinetic energy. This process ceases, and the flow reaches a steady state, only when the angular momentum is uniform in the direction of the field lines. This is closely related to the tendency of magnetic fields to promote two-dimensional turbulence.


2015 ◽  
Vol 33 (3) ◽  
pp. 245-255 ◽  
Author(s):  
T. Pitkänen ◽  
M. Hamrin ◽  
P. Norqvist ◽  
T. Karlsson ◽  
H. Nilsson ◽  
...  

Abstract. It is well known that nonzero interplanetary magnetic field By conditions lead to a twisted magnetotail configuration. The plasma sheet is rotated around its axis and tail magnetic field lines are twisted, which causes an azimuthal displacement of their ionospheric footprints. According to the untwisting hypothesis, the untwisting of twisted field lines is suggested to influence the azimuthal direction of convective fast flows in the nightside geospace. However, there is a lack of in situ magnetospheric observations, which show actual signatures of the possible untwisting process. In this paper, we report detailed Cluster observations of an azimuthal flow shear across the neutral sheet associated with an Earthward fast flow on 5 September 2001. The observations show a flow shear velocity pattern with a V⊥y sign change, near the neutral sheet (Bx~0) within a fast flow during the neutral sheet flapping motion over the spacecraft. Firstly, this implies that convective fast flows may not generally be unidirectional across the neutral sheet, but may have a more complex structure. Secondly, in this event tail By and the flow shear are as expected by the untwisting hypothesis. The analysis of the flow shear reveals a linear dependence between Bx and V⊥y close to the neutral sheet and suggests that Cluster crossed the neutral sheet in the dawnward part of the fast flow channel. The magnetospheric observations are supported by the semi-empirical T96 and TF04 models. Furthermore, the ionospheric SuperDARN convection maps support the satellite observations proposing that the azimuthal component of the magnetospheric flows is enforced by a magnetic field untwisting. In summary, the observations give strong supportive evidence to the tail untwisting hypothesis. However, the T96 ionospheric mapping demonstrates the limitations of the model in mapping from a twisted tail.


2000 ◽  
Vol 195 ◽  
pp. 213-222 ◽  
Author(s):  
Y. Uchida ◽  
M. Nakamura ◽  
T. Miyagoshi ◽  
T. Kobayashi ◽  
T. Mukawa ◽  
...  

In the present paper, we stress the importance of the magnetic field in the problem of acceleration and collimation of astrophysical jets, and discuss our proposed generic picture for such “central gravitator + jets + lobes” systems and inherent interpretations of the various observational characteristics of such systems: Mechanisms are proposed for (1) the enhanced liberation of gravitational energy at the central object, (2) the transfer of a part of the liberated energy along the large-scale magnetic field by large-amplitude, torsional Alfvén wave trains that form collimated jets (we call this a sweeping pinch process), (3) the dumping of the transferred energy at the end of the jets when they impinge on the denser region outside the border of the “cavity” from which the mass contracted to the central condensation (central gravitator + accretion disk, as well as the larger-scale condensation surrounding them), and (4) the formation of wiggled jets and lobes as helical kinks and the tucked-up magnetic field produced in the sweeping pinch process, respectively.


1990 ◽  
Vol 140 ◽  
pp. 281-286
Author(s):  
Takenori Nakano

The angular momentum is one of the major obstacles to the contraction of interstellar clouds. An efficient process of removing the angular momentum from the cloud is via transport along the magnetic field lines to the ambient medium. When the magnetic field is nearly uniform and the direction of the field lines is parallel to the rotation axis, the spin-down time of the cloud is given by σ/2ρVA, where σ is the column density of the cloud along the field lines, and ρ and VA are the density and the Alfvén velocity, respectively, in the ambient medium (Ebert et al. 1960; Mouschovias & Paleologou 1980). However, this is for a cloud with weak gravity. Because a cloud with strong gravity has contracted dragging the field lines, the ambient field is considerably distorted from uniformity. The spin-down time of such a cloud is shorter than given above (Gillis, Mestel & Paris 1974, 1979).


1994 ◽  
Vol 159 ◽  
pp. 249-252
Author(s):  
G. Pelletier ◽  
J. Ferreira ◽  
F. Rosso

In this brief communication, we present some progress in the investigation of a most promising model that was designed to combine ejection with accretion. In this model, a bipolar configuration of opened magnetic field lines that thread the accretion disk, allows the extraction of angular momentum, the acceleration of matter up to super Alfvénic velocities and the self collimation of the jet. However, important issues have remained unsolved. First, a systematic method for solving the jet MHD equations with their critical surfaces was lacking. Second, the capability of accretion disks to generate super Alfvénic jets was unknown. Third, the back-reaction of the ejection on the accretion disk dynamics and its energetics remained to be done. Solving these three points led us to draw some noteworthy consequences for the understanding of AGNs.


2000 ◽  
Vol 12 (2) ◽  
pp. 145-153 ◽  
Author(s):  
R. Tabet ◽  
H. Imrane ◽  
D. Saifaoui ◽  
A. Dezairi ◽  
F. Miskane

Sign in / Sign up

Export Citation Format

Share Document