scholarly journals Scattering of slow neutrons

The adsorption and scattering of slow neutrons have been studied by various methods. In their first survey, Amaldi, D'Agostino, Fermi, Pontecorvo, Rasetti and Segré (1935) investigated the absorption of slow neutrons by different elements inside a paraffin block. The number of slow neutrons capture in an indicator (e. g. silver). The values for the absorption coefficients which they obtained with this arrangement can be regarded as a measure of the ''true'' absorption of slow neutrons. Later, Dunning, Pegram, Fink and Mitchell (1935) measured the "total" cross-sections, i. e. the sum of the well-defined beam of slow neutrons, and a lithium-coated ionization chamber as indicator. Recently, Griffiths and Szilard (1937) have determined the cross-section of some strongly absorbing elements using the captured γ-rays from cadmium as indicator. The scattering of slow neutrons was studied for some elements by MItchell and Murphy (1935), Mitchell, Murphy and Whitaker (1936), Budnitzky and Kurtschatow (1935) Pontecorvo and Wick (1936), and others. In these experiments, the slow neutrons issuing from a paraffin block passed through an indicator (e. g. silver), and were scattered backwards from the substance under investigation. When thin scattered are used, the percentage increase of the radioactivity produced in the indicator gives a measure of the scattering cross-section. This method has the disadvantage, even in the case of good scatters, that the increase in the radioactivity of the indicator is usually small compared with the effect due to the primary neutrons. A quantitative interpretation of the results may be further complicated by the fact that the neutrons leave the surface of the paraffin block at angles from 0 to 90°. Also, multiple scattering is not avoided.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2313-2316 ◽  
Author(s):  
◽  
H. KANDA ◽  
N. CHIGA ◽  
Y. FUJII ◽  
K. FUTATSUKAWA ◽  
...  

The total cross sections for the π+π− photoproduction on the deuteron were measured in an energy range of 0.8 to 1.1 GeV. The obtained total cross section for the quasi-free π+π− photoproduction on the deuteron was about 60 % of those on the free proton. The cross section for Δ++Δ− photoproduction was derived from the non-quasi-free π+π− photoproduction events. It was smaller than the previous data.


1968 ◽  
Vol 112 (3) ◽  
pp. 513-526 ◽  
Author(s):  
P. Decowski ◽  
W. Grochulski ◽  
A. Marcinkowski ◽  
K. Siwek ◽  
I. Śledzińska ◽  
...  

1975 ◽  
Vol 53 (10) ◽  
pp. 962-967 ◽  
Author(s):  
B. Jaduszliwer ◽  
A. Nakashima ◽  
D. A. L. Paul

The total cross sections for the scattering of positrons by helium have been measured by the method of transmission in the 16 to 270 eV energy range. The experimental results are higher than those of Canter et al. but are in reasonable agreement with recent results of Griffith et al., and at high energies tend towards Born approximation calculations. The integral of the cross section over positron momentum is smaller than the sum rule estimate made by Bransden et al. A tentative value of (0.034 ± 0.017)πa02 is assigned to the positronium formation cross section at threshold.


The main features of the C. E. R. N. Intersecting Storage Rings (I. S. R.) are reviewed, together with results obtained in 1971 and 1972 on elastic scattering and total cross-sections. The main result is a 10% increase of the total proton-proton cross-section in the I. S. R. energy range. The simplest picture of high energy proton-proton scattering which emerges from this and the other data, is briefly discussed.


2001 ◽  
Vol 16 (28) ◽  
pp. 1829-1839 ◽  
Author(s):  
DIETER SCHILDKNECHT ◽  
BERND SURROW ◽  
MIKHAIL TENTYUKOV

Including the new HERA data, the γ*p total cross-section is analyzed in the generalized vector dominance/color-dipole picture (GVD/CDP) that contains scaling in [Formula: see text], where Λ2(W2) is an increasing function of W2. At any Q2, for W2→∞, the cross-sections for virtual and real photons become identical, σγ*p (W2,Q2)/σγp (W2)→ 1. The gluon density deduced from the color-dipole cross-section fulfills the leading order DGLAP relationship. Evolution à la DGLAP breaks down for η≲0.1.


The neutron velocity selector of the Cavendish Laboratory has been used to measure the scattering cross-sections of ortho- and para -hydrogen for slow neutrons. The triplet and singlet scattering amplitudes of the neutron-proton interaction may be deduced from these cross-sections. The values obtained are a t = (0·537 ± 0·004) x 10 -12 cm, a s = -(2·373 ±0·007) x 10 -12 cm, where a t and a s are the triplet and singlet scattering amplitudes respectively. The values of the coherent scattering amplitude ƒ = 2(3/4 a +1/4 a ), and of the free proton cross-section σ ƒ = 4π(3/4 a 2 t + 1/4 a 2 s given by the above values of a t and a s , are ƒ = -(0·380 ± 0·005) x 10 -12 cm, σ ƒ = (20·41 ± 0·14) x 10 -24 cm 2 .


1969 ◽  
Vol 139 (1) ◽  
pp. 42-56 ◽  
Author(s):  
A. Abboud ◽  
P. Decowski ◽  
W. Grochulski ◽  
A. Marcinkowski ◽  
J. Piotrowski ◽  
...  

Precise measurements of the total cross sections of positive and negative π mesons on hydrogen have revealed the presence of structure or enhancements in these cross sections at various momenta up to 3 GeV/ c . The present paper discusses measurements of this type and in particular, a recent experiment to search for structure in the region 3 to 7 GeV/ c , where previous experiments have shown that, if structure were present, it was likely to reveal itself as an amplitude in the total cross section of 1 mb or less. The recent measurements indicate four regions of structure, two in each of the isotopic spin states 3/2 and 1/2. The possible relation of these regions of structure to the formation of pion-nucleon resonances is discussed.


Sign in / Sign up

Export Citation Format

Share Document