Quantitative aspects of alkylperoxy radical isomerization during hydrocarbon combustion

Detailed studies of the distribution of the products formed in the different regimes of combustion of n -pentane indicate the importance in the overall oxidation mechanism of the isomerization of amylperoxy radicals. It has been shown that C 5 O -heterocycles and C 5 alkenes are formed as a result of the intramolecular rearrangement of such radicals but that O -heterocycles, carbonyl compounds and alkenes of carbon-number less than five are produced in other ways. The experimental results suggest that, under cool-flame conditions where the yields of C 5 O -heterocycles and C 5 alkenes are highest, between 40 and 50% of the initially formed amylperoxy radicals undergo isomerization followed either by O—O bond fission and cyclization or by C—O bond fission. Then nature and amounts of the various O -heterocyclic products formed from n -pentane enable deductions to be made firstly as to the extents of initial oxidative attack of the hydrocarbon at different skeletal positions and secondly as to the relative susceptibilities of the different C—H groups to intramolecular hydrogen abstraction by the outer oxygen atom of the amylperoxy radical.

Studies of the combustion of n -hexane with special reference to the O -heterocyclic products formed show that these compounds are present in the largest quantities under cool flame conditions and that their concentration decreases sharply at the ignition boundary. O -heterocyclic compounds appear to be the main products of the intramolecular rearrangement of hexylperoxy radicals and their structure shows that they are derived predominantly from the 2-hexylperoxy radical. The amounts of the different O -heterocycles produced can, on the basis of reasonable assumptions, provide information regarding the relative susceptibility to intramolecular hydrogen abstraction of the 3-, 4- and 5-positions in the 2-hexylperoxy radical.


2020 ◽  
Vol 74 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Andreas Herrmann

Photoirradiation of 2-oxoacetates (α-ketoesters) with UV-A light proceeds via an intramolecular hydrogen abstraction of the triplet state in a Norrish type II pathway to form carbonyl compounds, carbon monoxide and/or dioxide, and a series of other side products. This review gives a detailed overview of the mechanistic aspects of photooxidation by explaining the pathways that yield the major products formed in the presence or absence of oxygen. Furthermore, it demonstrates how the photoreaction can be used for the light-induced controlled release of fragrances from non-polymeric profragrances, polymer conjugates and core-shell microcapsules in applications of functional perfumery. In the case of microcapsules, the gas formation accompanying the Norrish type II fragmentation can generate an overpressure that expands or cleaves the capsule wall to release fragrances and thus provides access to multi-stimuli responsive delivery systems.


Three approaches have been used to elucidate the mechanism of combustion of decane in the cool-flame region. First, measurements have been made of cool-flame and ignition parameters. These show a well defined change in activation energy at about 530 K. Second, analytical studies have been made of the effect of increasing temperature on the combustion products. These indicate that hydroperoxide formation ceases and that C 10 O-heterocycles become the predominant products at 500-530 K; the relative amounts of decanal and decanone do not however change. Finally, small amounts of hydrogen bromide have been added. These cause the complete conversion of hydroperoxides into decanones even at low temperatures; no lower carbonyl compounds are formed above 500 K. This work has led to two principal conclusions. One, which is shown by all three methods of study, is that the cool-flame combustion of decane involves two distinct mechanisms with a transition at 500-530 K. The other is that the selectivity of initial oxidative attack on decane remains low over the whole of the slow combustion and cool-flame regions between 440 and 680 K, suggesting that hydroxyl radicals are the main attacking species throughout.


1978 ◽  
Vol 56 (15) ◽  
pp. 1970-1984 ◽  
Author(s):  
D. R. Arnold ◽  
C. P. Hadjiantoniou

The electronic absorption and phosphorescence emission spectra and the photochemical reactivity of several methyl-3-benzoylthiophenes (2- and 4-methyl-3-benzoylthiophene (1, 2), 2,5-dimethyl-3-benzoylthiophene (3), and 3-(2-methylbenzoyl)thiophene (4)) have been studied. Partial state diagrams have been constructed. The lowest energy absorption in hexane solution in every case is the carbonyl n → π* transition. The two lowest triplet states of these ketones are close in energy and, in fact, the nature of the emitting triplet (n,π* or π,π*) depends upon the position of methyl substitution and upon the solvent. The photochemical reactions studied include intramolecular hydrogen abstraction (revealed by deuterium exchange in the adjacent methyl group upon irradiation in perdeuteriomethanol solution), photocycloaddition of dimethyl acetylenedicarboxylate to the thiophene ring, and photocycloaddition of isobutylene to the carbonyl group. Generalizations, potentially useful for predicting photochemical reactivity of these and other aromatic ketones are summarized.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 461 ◽  
Author(s):  
Maciej Spiegel ◽  
Tadeusz Andruniów ◽  
Zbigniew Sroka

Flavonoids are known for their antiradical capacity, and this ability is strongly structure-dependent. In this research, the activity of flavones and flavonols in a water solvent was studied with the density functional theory methods. These included examination of flavonoids’ molecular and radical structures with natural bonding orbitals analysis, spin density analysis and frontier molecular orbitals theory. Calculations of determinants were performed: specific, for the three possible mechanisms of action—hydrogen atom transfer (HAT), electron transfer–proton transfer (ETPT) and sequential proton loss electron transfer (SPLET); and the unspecific—reorganization enthalpy (RE) and hydrogen abstraction enthalpy (HAE). Intramolecular hydrogen bonding, catechol moiety activity and the probability of electron density swap between rings were all established. Hydrogen bonding seems to be much more important than the conjugation effect, because some structures tends to form more intramolecular hydrogen bonds instead of being completely planar. The very first hydrogen abstraction mechanism in a water solvent is SPLET, and the most privileged abstraction site, indicated by HAE, can be associated with the C3 hydroxyl group of flavonols and C4’ hydroxyl group of flavones. For the catechol moiety, an intramolecular reorganization to an o-benzoquinone-like structure occurs, and the ETPT is favored as the second abstraction mechanism.


Ozone Therapy ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Giuseppe Vitali ◽  
Luigi Valdenassi

Ozone (O3) is a bluish-coloured gas with a characteristic odour that forms in the layers of the atmosphere, near electric shocks, sparks or lightning; the extremely high voltages reached during thunderstorms produce ozone from oxygen. The particular fresh, clean odour, the smell of spring rain is the result of the ozone reproduced by nature. Ozone comes from the Greek word ozein, which means to sense the odour of. Ozone is an essential gas for life on Earth, allowing the absorption of ultraviolet light emanating from the Sun; in fact, the ozone layer in the stratosphere protects against the harmful action of UV-B ultraviolet rays. The gas, not being stable over the long term, is therefore not produced in cylinders; it can currently be prepared through special, certified and authorised devices, which use small electric discharges to convert the oxygen into ozone. It is a molecule formed by three oxygen atoms (O3), with a negative electric charge. It has a short half-life, and will therefore decay after a certain time back to its original form: oxygen. Essentially ozone is nothing but oxygen (O2) with an extra oxygen atom, which has a high electrical charge. Ozone works according to the principle of oxidation. The oxidation mechanism follows two paths: i) Direct: contact of the molecule with the contaminant; ii) Indirect: the ozone decomposes into hydroxyl radicals, more powerful but short-lived. Both reactions occur simultaneously. When the static charged ozone molecule (O3) comes into contact with something capable of oxidising, the ozone molecule’s charge flows directly over it. This happens because ozone is very unstable and tends to change back into its original form (O2). Ozone can oxidise with all kinds of materials, but also with odours and microorganisms such as bacteria, viruses and fungi. The supplemental oxygen atom is released from the ozone molecule and binds to the other material. In the end, only the pure and stable oxygen molecule remains. Ozone is one of the strongest oxidation techniques available for oxidising solutes. The supplemental/added oxygen atom will bind (=oxidation) in a second to each component that comes into contact with ozone. It is used for a wide range of purification processes. It can be employed for disinfection in municipal wastewater and in drinking water treatment plants. However, ozone is increasingly used in the industrial sector. In the food industry, for example, it is used for disinfection, and in the textile and paper industry it is used to oxidise wastewater. The main benefit of ozone is its clean nature, because it only oxidises the materials, barely forming any by-products. Since ozone has a strong characteristic distinctive odour, even very low concentrations can be quickly perceived. This generally makes it safe to work with. Since Chlorine is still the best-known oxidising and disinfectant agent, ozone is often compared with chlorine. Unlike chlorine, antibiotics or various chlorine derivatives that have no effect, ozone acts on viruses and spores. In its sterilising action, ozone directly attacks bacteria by inducing a catalytic oxidation process on the mass of bacterial proteins, unlike chlorine which acts only through specific enzymatic poisoning of vital centres, a process which requires a longer time interval and sensitive quantity for its diffusion inside the cytoplasm. Regarding the virucidal action, it is interesting to keep in mind that with a residual ozone rate of 0.6 ppm (parts per million) and with a contact time of 2 minutes, the percentage of inactivation for bacteria and viruses present in the disinfection liquid is total. Ozone’s oxidising power is 120 times greater than that of chlorine.


Sign in / Sign up

Export Citation Format

Share Document