scholarly journals Use of ozone in water, agriculture and zootechnics: relationships between dysbiosis and mental disorders

Ozone Therapy ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Giuseppe Vitali ◽  
Luigi Valdenassi

Ozone (O3) is a bluish-coloured gas with a characteristic odour that forms in the layers of the atmosphere, near electric shocks, sparks or lightning; the extremely high voltages reached during thunderstorms produce ozone from oxygen. The particular fresh, clean odour, the smell of spring rain is the result of the ozone reproduced by nature. Ozone comes from the Greek word ozein, which means to sense the odour of. Ozone is an essential gas for life on Earth, allowing the absorption of ultraviolet light emanating from the Sun; in fact, the ozone layer in the stratosphere protects against the harmful action of UV-B ultraviolet rays. The gas, not being stable over the long term, is therefore not produced in cylinders; it can currently be prepared through special, certified and authorised devices, which use small electric discharges to convert the oxygen into ozone. It is a molecule formed by three oxygen atoms (O3), with a negative electric charge. It has a short half-life, and will therefore decay after a certain time back to its original form: oxygen. Essentially ozone is nothing but oxygen (O2) with an extra oxygen atom, which has a high electrical charge. Ozone works according to the principle of oxidation. The oxidation mechanism follows two paths: i) Direct: contact of the molecule with the contaminant; ii) Indirect: the ozone decomposes into hydroxyl radicals, more powerful but short-lived. Both reactions occur simultaneously. When the static charged ozone molecule (O3) comes into contact with something capable of oxidising, the ozone molecule’s charge flows directly over it. This happens because ozone is very unstable and tends to change back into its original form (O2). Ozone can oxidise with all kinds of materials, but also with odours and microorganisms such as bacteria, viruses and fungi. The supplemental oxygen atom is released from the ozone molecule and binds to the other material. In the end, only the pure and stable oxygen molecule remains. Ozone is one of the strongest oxidation techniques available for oxidising solutes. The supplemental/added oxygen atom will bind (=oxidation) in a second to each component that comes into contact with ozone. It is used for a wide range of purification processes. It can be employed for disinfection in municipal wastewater and in drinking water treatment plants. However, ozone is increasingly used in the industrial sector. In the food industry, for example, it is used for disinfection, and in the textile and paper industry it is used to oxidise wastewater. The main benefit of ozone is its clean nature, because it only oxidises the materials, barely forming any by-products. Since ozone has a strong characteristic distinctive odour, even very low concentrations can be quickly perceived. This generally makes it safe to work with. Since Chlorine is still the best-known oxidising and disinfectant agent, ozone is often compared with chlorine. Unlike chlorine, antibiotics or various chlorine derivatives that have no effect, ozone acts on viruses and spores. In its sterilising action, ozone directly attacks bacteria by inducing a catalytic oxidation process on the mass of bacterial proteins, unlike chlorine which acts only through specific enzymatic poisoning of vital centres, a process which requires a longer time interval and sensitive quantity for its diffusion inside the cytoplasm. Regarding the virucidal action, it is interesting to keep in mind that with a residual ozone rate of 0.6 ppm (parts per million) and with a contact time of 2 minutes, the percentage of inactivation for bacteria and viruses present in the disinfection liquid is total. Ozone’s oxidising power is 120 times greater than that of chlorine.

2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


2020 ◽  
Vol 21 (24) ◽  
pp. 9769
Author(s):  
Saaya Koike ◽  
Kenshi Yamasaki

The epidermis is located in the outermost layer of the living body and is the place where external stimuli such as ultraviolet rays and microorganisms first come into contact. Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage. Pigmentary disorders are observed in diseases associated with immunodeficiency such as Griscelli syndrome, indicating molecular sharing between immune systems and the machineries of pigment formation. Melanocytes express functional toll-like receptors (TLRs), and innate immune stimulation via TLRs affects melanin synthesis and melanosome transport to modulate skin pigmentation. TLR2 enhances melanogenetic gene expression to augment melanogenesis. In contrast, TLR3 increases melanosome transport to transfer to keratinocytes through Rab27A, the responsible molecule of Griscelli syndrome. TLR4 and TLR9 enhance tyrosinase expression and melanogenesis through p38 MAPK (mitogen-activated protein kinase) and NFκB signaling pathway, respectively. TLR7 suppresses microphthalmia-associated transcription factor (MITF), and MITF reduction leads to melanocyte apoptosis. Accumulating knowledge of the TLRs function of melanocytes has enlightened the link between melanogenesis and innate immune system.


2000 ◽  
Vol 46 (6) ◽  
pp. 565-576 ◽  
Author(s):  
Pierre Payment ◽  
Aminata Berte ◽  
Michèle Prévost ◽  
Bruno Ménard ◽  
Benoît Barbeau

A 300-km portion of the Saint Lawrence hydrological basin in the province of Québec (Canada) and 45 water treatment plants were studied. River water used by drinking water treatment plants was analyzed (6-L sample volumes) to determine the level of occurrence of bacterial indicators (total coliforms, fecal coliforms, and Clostridium perfringens) and pathogens (Giardia lamblia, Cryptosporidium, human enteric viruses). Pathogens and bacterial indicators were found at all sites at a wide range of values. Logistic regression analysis revealed significant correlations between the bacterial indicators and the pathogens. Physicochemical and treatment practices data were collected from most water treatment plants and used to estimate the level of removal of pathogens achieved under cold (0°C-4°C) and warm (20°C-25°C) water temperature conditions. The calculated removal values were then used to estimate the annual risk of Giardia infection using mathematical models and to compare the sites. The estimated range of probability of infection ranged from 0.75 to less than 0.0001 for the populations exposed. Given the numerous assumptions made, the model probably overestimated the annual risk, but it provided comparative data of the efficacy of the water treatment plants and thereby contributes to the protection of public health.Key words: public health, drinking water, health risk, pathogen occurrence.


Author(s):  
A. J. Perrotta ◽  
J. V. Smith

SummaryA full-matrix, three-dimensional refinement of kalsilite, KAlSi04 (hexagonal, a 5·16, c 8.69 Å, P6a), shows that the silicon and aluminium atoms are ordered. The respective tetrahedral distances of 1·61 and 1·74 Å agree with values of 1·61 and 1·75 Å taken to be typical of framework structures. As in nepheline, an oxygen atom is statistically distributed over three sites displaced 0·25 Å from the ideal position on a triad axis. This decreases the bond angle from 180° to 163° in conformity with observations on some other crystal structures. The potassiumoxygen distances of 2·77, 2·93, and 2·99 Å are consistent with the wide range normally found for this weakly bonded atom.


2021 ◽  
Author(s):  
Zhanyuan Yin ◽  
Leif Zinn-Brooks

Abstract Ball-rolling dung beetles shape a portion of dung into a ball and roll it away from the dung pile for later burial and consumption. These beetles perform dances (rotations and pauses) atop their dung balls in order to choose an initial rolling direction and to correct their rolling direction (reorient). Previous mathematical modeling showed that dung beetles can use reorientation to move away from the dung pile more efficiently. In this work, we study if reorientation can help beetles avoid competition (i.e., avoid having their dung balls captured), and if so, under what circumstances? This is investigated by implementing a model with two different type of beetles, a roller with a dung ball and a searcher which seeks to capture that dung ball. We show that reorientation can help rollers avoid searchers in a wide range of conditions, but that there are some circumstances in which rolling without reorienting can be a beetle's optimal strategy. We also show that rollers can minimize the probability that their dung ball is captured without making precise measurements of the time interval between dances or the angular deviation for dances.


2006 ◽  
Vol 21 (8) ◽  
pp. 551-562 ◽  
Author(s):  
Thomas A. Pagonis ◽  
Nikiforos V. Angelopoulos ◽  
George N. Koukoulis ◽  
Christos S. Hadjichristodoulou

AbstractObjectiveThe objective of our study was to evaluate the psychological consequences of real-world AAS use in athletes abusing such agents, in comparison with a placebo and control group of comparable athletes, while correlating the severity of abuse with the side effects observed. The hypothesis tested by the study was that the use of AAS induces a wide range of psychological side effects whose impact and emergence is dependent upon the severity of the abuse.DesignThe study includes a substantial group of AAS abusing athletes and two more groups demographically similar to the first, one composed of athletes not using any substance and a placebo group. All athletes were stratified according to the severity of AAS abuse. Psychometric instruments were applied to all athletes in specific time intervals, dependent to the AAS abusers' regimens, providing us with a final psychological profile that was to be compared to the pre-study profile. All results were comparable (within and between groups) for statistically significant differences and correlated to the severity of the abuse. Homogeneity of all groups was safeguarded by random doping controls, monitoring of drug levels and analysis of all self obtained drugs by method of liquid chromatography/mass spectrometry. All athletes were provided with a common exercise and dietary regime, so common training and nutritional conditions were achieved.MethodsWe studied a cohort of 320 body-building, amateur and recreational athletes, of whom 160 were active users of AAS (group C), 80 users administering placebo drugs (group B) and 80 not abusing any substance (Group A). Group C athletes were stratified according to AAS abuse parameters, thus providing us with three subgroups of “light, medium and heavy abuse”. Athletes of groups A and B were included in a “no abuse” subgroup. The psychometric instruments used were the Symptoms Check List-90 (SCL-90) and the Hostility and Direction of Hostility Questionnaire (HDHQ). The psychometric evaluations took place within a time interval of 13 months. Statistical analysis was performed by using the Mann–Whitney/Wilcoxon two-sample non-parametric test (Kruskal–Wallis test for two groups) for data that were not normally distributed and Linear regression analysis was used to ascertain the correlation between severity of use and escalation of side effects.ResultsThe study showed a statistically significant increase in all psychometric subscales recorded in group C, and no statistically significant difference in group C and A. There was a significant increase in the scorings of group C for all subscales of SCL-90 and HDHQ. Correlation of abuse severity and side effects showed that there was a statistical significant increase in Δ values of all SCL-90 and HDHQ subscales that escalated from light abuse to medium and heavy abuse/consumption patterns.ConclusionsThe results of the study suggest that the wide range of psychiatric side effects induced by the use of AAS is correlated to the severity of abuse and the force of these side effects intensifies as the abuse escalates.


Author(s):  
Andrew C. Scott

It is sometimes said that humans were born of fire. While a wide range of animal species interact with fire, we appear to be the only species to have learned to tame it, and more importantly to make it. There is evidence that early humans were aware of fire and may have exploited naturally occurring fire, but only later did they control and manage it. Human interaction with fire must have proceeded through various levels, the first of which can be described as the opportunistic phase. In this phase, natural fire may have been exploited to help in hunting, for example. When, how, and why did this happen? It is widely agreed that our story begins in Africa. It is here that we see the evolution of hominins, a group of related genera that include the Australopithecines and later the genus Homo. How common would fire have been in the environments in which they lived? We already know from the study of fossil plants, as well as isotope data, that there were important changes in both the vegetation and climate over the past 10 million years. It is also during this time interval that hominins emerged from apes. Through the Oligocene and Miocene (30–8 million years ago), Africa was largely covered by tropical rainforest, where fire was present but infrequent, started both by lightning strikes and volcanic activity. As the climate began to dry and C4 grasses spread at the end of the Miocene Epoch, around 8 million years ago, habitats became more open. Fire became more frequent, and from an animal perspective would have become more visible, not just from flames but also smoke. Frequent fire in the landscape would have had many consequences for the early hominins, not just because game was more easily killed, but burned animals (naturally cooked meat) would have made a useful addition to the diet, and the new flush of growth following fire would also have attracted large herds of herbivores. Fire may have been conserved through adding fuel, including dung, which is slow burning.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5820
Author(s):  
Zhenzhou Deng ◽  
Yushan Deng ◽  
Guandong Chen

Positron emission tomography (PET) has a wide range of applications in the treatment and prevention of major diseases owing to its high sensitivity and excellent resolution. However, there is still much room for optimization in the readout circuit and fast pulse sampling to further improve the performance of the PET scanner. In this work, a LIGHTENING® PET detector using a 13 × 13 lutetium-yttrium oxyorthosilicate (LYSO) crystal array read out by a 6 × 6 silicon photomultiplier (SiPM) array was developed. A novel sampling method, referred to as the dual time interval (DTI) method, is therefore proposed to realize digital acquisition of fast scintillation pulse. A semi-cut light guide was designed, which greatly improves the resolution of the edge region of the crystal array. The obtained flood histogram shown that all the 13 × 13 crystal pixels can be clearly discriminated. The optimum operating conditions for the detector were obtained by comparing the flood histogram quality under different experimental conditions. An average energy resolution (FWHM) of 14.3% and coincidence timing resolution (FWHM) of 972 ps were measured. The experimental results demonstrated that the LIGHTENING® PET detector achieves extremely high resolution which is suitable for the development of a high performance time-of-flight PET scanner.


2006 ◽  
Vol 54 (4) ◽  
pp. 77-82 ◽  
Author(s):  
B.R. Johnson ◽  
Y. Shang

The ADM 1 model has been implemented in a steady-state whole wastewater plant simulator. The ADM 1 model has been in use with good success for approximately 2 years on a wide range of wastewater treatment facilities. However, a number of modifications were necessary to allow it to be used in the context of municipal wastewater treatment. It was found that the model's use was greatly simplified if used in conjunction with a larger plant simulator to assist in the feed fractionation. It was also found that a better fit to actual operating data was achieved if some of the slowly biodegradable particulate fraction was partitioned into ADM particulate fractions other than the composite fraction. Another significant limitation of the model is in the absence of phosphorus modeling. The ADM model needs to have phosphorus handling for all the relevant fractions, and needs to include the handling of inorganic reactions such as struvite precipitation and metal phosphate/metal hydroxide precipitation. Activity effects on chemical equilibria are significant when considering phosphorus. Also of importance in wastewater treatment is the fate of sulfur compounds. This includes the generation of H2S in the digester gas and the fate of the sulfur species in the digested sludge (as a predictor of odour-generating potential).


Sign in / Sign up

Export Citation Format

Share Document