The magnetoelastic coefficients h 3 and h 4 of (100) nickel films

New values have been obtained for the magnetoelastic coefficients h 3 and h 4 of nickel at room temperature from ferromagnetic resonance experiments on (100) single crystal nickel films. The ratios of h 3 / h 1 and h 4 / h 1 are found to be 0.091 ± 0.007 and 0.153 ± 0.015 respectively which give h 3 = (- 8.5 ± 0.7) x 10 -6 and h 4 = (- 14.3 ± 1.4) x 10 -6 if the Lee & Asgar value of h 3 is used (- 94 x 10 -6 ). The magnetocrystalline anisotropy constant K 1 , the saturation magnetization M and the spectroscopic splitting factor g have been measured also. It is found that K 1 = ( - 5.4 ± 0.3) x 10 4 erg/cm 3 and that g = 2.161 ± 0.009 in agreement with published data on bulk samples but that the value of M is found to be higher than the bulk value by 1.6%. The discrepancies between the values of h 3 , h 4 and M as reported here and the bulk values are discussed. The theory of feromagnetic resonance has been extended to cover the five-constant representation of magnetostriction and to the K 3 anisotropy term. The effect of the g factor having cubic anisotropy on the resonance conditions has been calculated.

Author(s):  
А.И. Дмитриев ◽  
А.В. Кочура ◽  
С.Ф. Маренкин ◽  
E. Lahderanta ◽  
А.П. Кузьменко ◽  
...  

The magnetic anisotropy of needle-like single-crystal MnSb inclusions in the InSb matrix was determined and studied in the temperature range 5 – 350 K. In granular InSb-MnSb samples a power-law dependence of the anisotropy constant K(T) on the saturation magnetization MS(T) is observed in the temperature range 5 – 350 K with an exponent n = 3.2 ± 0.4 in accordance with the theories developed by Akulov, Zener, and Callens.


2021 ◽  
Vol 63 (9) ◽  
pp. 1321
Author(s):  
Т.А. Шайхулов ◽  
К.Л. Станкевич ◽  
К.И. Константинян ◽  
В.В. Демидов ◽  
Г.А. Овсянников

The temperature dependence of the voltage induced by the spin current was studied in an epitaxial thin-film La0.7Sr0.3MnO3 / SrIrO3 heterostructure deposited on a single-crystal NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the La0.7Sr0.3MnO3 ferromagnetic layer and was detected in the SrIrO3 layer due to inverse spin Hall effect. A significant increase of half-width of the spin current spectrum along with the rise of amplitude of the spin current upon cooling from room temperature (300 K) to 135 K were observed.


1999 ◽  
Vol 14 (11) ◽  
pp. 4195-4199
Author(s):  
C. P. Yang ◽  
Y. Z. Wang ◽  
G. H. Wu ◽  
B. P. Hu ◽  
X. F. Han ◽  
...  

A novel Tb3(Fe,Cr)29 single crystal, which has a monoclinic Nd3(Fe,Ti)29-type structure, is obtained using the Czochralski method by performing a proper heat treatment on the Tb2Fe16.46Cr1.23 crystal with a Th2Ni17-type structure. Thermomagnetic curves along the easy axis and magnetization curves along the easy and hard axes are presented for both crystals. The lattice parameters are a = 1.058 nm, b = 0.848 nm, c = 0.968 nm, α = γ = 90°, and β = 96.93° for the Tb3(Fe,Cr)29 single crystal. The Curie temperatures, saturation magnetizations, and magnetocrystalline anisotropy constants are compared between the Tb-2:17 and Tb-3:29 crystals. The magnetization behavior along the hard axis is quite different as a first-order magnetization process (FOMP) of type I for the Tb-2:17, but a FOMP of type II for the Tb-3:29 crystal is observed below room temperature. At low temperatures, magnetohistory effects are detected for both crystals.


2001 ◽  
Vol 15 (24n25) ◽  
pp. 3266-3269 ◽  
Author(s):  
G. DEWAR ◽  
S. PAGEL ◽  
P. SOURIVONG

Ferromagnetic resonance measurements have been performed on several samples of Terfenol-D ( Dy0.73Tb0.27Fe1.95 ) at 16.95 GHz and over the temperature range 293 to 305 K. We find that the first magnetocrystalline anisotropy constant, obtained from one sample under nearly zero stress, is K1 = (-1.4±1.0)× l06 erg/cm 3 at 294 K. Our measurement is distinct from quasistatic torque measurements in that the lattice does not deform during the measurement and, hence, the anisotropy contribution due to magnetoelastic strain does not enter. The bare anisotropy constant, unmodified by static elastic strain, is [Formula: see text] and [Formula: see text]. The samples exhibited hysteresis; the position of FMR shifted by 4.0 kOe between measurements made with the magnetic field increasing and those made with the field decreasing.


1970 ◽  
Vol 48 (9) ◽  
pp. 1103-1104 ◽  
Author(s):  
V. Kambersky

Results are reported for the line width of the ferromagnetic resonance in pure iron whiskers. Line widths were measured at 24.5, 35, and 73 GHz and at room temperature and 4.2 °K. An unsuccessful attempt was made to detect the antiresonance at ω = γB, where γ is the spectroscopic splitting factor of the electron spins in iron.


Sign in / Sign up

Export Citation Format

Share Document