Theory of dissociative recombination and related processes

The theory of dissociative recombination (and the closely related processes of associative ionization and mutual quenching) is developed by using the Feshbach projection operator technique. An expression is given for the cross-section into a specific final state of the dissociating atoms. It is found that the complex potential energy corresponding to a resonance state is non-local in nature and the implications of using a local approximation are considered. The theory of photodissociation through resonances is developed with special reference to the energy spectrum of the products. It is shown that dissociative attachment can be studied without explicitly constructing the intermediate state.

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Markus A. Ebert ◽  
Bernhard Mistlberger ◽  
Gherardo Vita

Abstract We demonstrate how to efficiently expand cross sections for color-singlet production at hadron colliders around the kinematic limit of all final state radiation being collinear to one of the incoming hadrons. This expansion is systematically improvable and applicable to a large class of physical observables. We demonstrate the viability of this technique by obtaining the first two terms in the collinear expansion of the rapidity distribution of the gluon fusion Higgs boson production cross section at next-to-next-to leading order (NNLO) in QCD perturbation theory. Furthermore, we illustrate how this technique is used to extract universal building blocks of scattering cross section like the N-jettiness and transverse momentum beam function at NNLO.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Edmond Iancu ◽  
Yair Mulian

Abstract Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the “real” next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in [1]. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO corrections to inclusive dijet production are then obtained by integrating out the kinematics of any of the three final partons. We explicitly work out the interesting limits where the unmeasured parton is either a soft gluon, or the product of a collinear splitting. We find the expected results in both limits: the B-JIMWLK evolution of the leading-order dijet cross-section in the first case (soft gluon) and, respectively, the DGLAP evolution of the initial and final states in the second case (collinear splitting). The “virtual” NLO corrections to dijet production will be presented in a subsequent publication.


1994 ◽  
Vol 09 (18) ◽  
pp. 3229-3244
Author(s):  
K. CHARCHULA ◽  
J. GAJEWSKI

A detailed numerical study of radiative corrections in the low Q2 region at the HERA ep collider was performed. The specific case of the total photoproduction cross section measurement was taken as an example. Two different programs, TERAD91 and HER-ACLES4.2, were used to get an estimate of the size of radiative effects. It was found that radiative corrections can be quite large at some points of the space of leptonic (x, y) variables. However, after imposing experimentally feasible cuts on the radiated photon and the hadronic final state one gets corrections at the level of a few per cent.


2021 ◽  
Vol 4 (4) ◽  
pp. 1-22
Author(s):  
Fernando Farroni ◽  
◽  
Giovanni Scilla ◽  
Francesco Solombrino ◽  

<abstract><p>The approximation in the sense of $ \Gamma $-convergence of nonisotropic Griffith-type functionals, with $ p- $growth ($ p &gt; 1 $) in the symmetrized gradient, by means of a suitable sequence of non-local convolution type functionals defined on Sobolev spaces, is analysed.</p></abstract>


2020 ◽  
pp. 39-46
Author(s):  
О. Kukhotska ◽  
I. Ovdiienko ◽  
M. Ieremenko

The paper presents the results of uncertainty analysis of WWER‑1000 core macroscopic cross sections due to spectral effects during WWER‑1000 fuel burnup and the analysis of cross section sensitivity from thermophysical parameters of the calculated cell, which affect energy spectrum of neutron flux density. The calculation of changes in the isotopic composition during burnup and the preparation of macroscopic cross sections used the developed HELIOS computer model [1] for TVSA, which is currently operated at most Ukrainian WWER‑1000 units. The GRS approach applying Software for Uncertainty and Sensitivity Analyses (SUSA) [2] was chosen to assess the uncertainty of the macroscopic cross sections due to spectral effects and analysis of cross section sensitivity from thermophysical parameters. The spectral effect on macroscopic cross sections was taken into account by calculating the fuel burnup for variational sets of thermophysical parameters (fuel temperature, coolant temperature and density, boric acid concentration) prepared in advance by the SUSA program, as a result of which fuel isotopic composition vectors were obtained. After that, neutronic constants for the reference state were developed for each of the sets of isotopic composition, which corresponded to a certain set of thermophysical parameters. At the next stage, the uncertainty of macroscopic cross sections of the interaction due to the spectral effects on the isotopic composition of the fuel was analyzed using SUSA 4, followed by the analysis of cross section sensitivity from thermophysical parameters of the calculated cell affecting energy spectrum of neutron flux density. In the future, the uncertainty of two-group macroscopic diffusion constants can be used to estimate the overall uncertainty of neutronic characteristics in large-grid core calculations, in particular, in the safety analysis.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
A. Tumasyan ◽  
W. Adam ◽  
J. W. Andrejkovic ◽  
T. Bergauer ◽  
...  

Abstract A search for a heavy Higgs boson H decaying into the observed Higgs boson h with a mass of 125 GeV and another Higgs boson hS is presented. The h and hS bosons are required to decay into a pair of tau leptons and a pair of b quarks, respectively. The search uses a sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137 fb−1. Mass ranges of 240–3000 GeV for mH and 60–2800 GeV for $$ {m}_{{\mathrm{h}}_{\mathrm{S}}} $$ m h S are explored in the search. No signal has been observed. Model independent 95% confidence level upper limits on the product of the production cross section and the branching fractions of the signal process are set with a sensitivity ranging from 125 fb (for mH = 240 GeV) to 2.7 fb (for mH = 1000 GeV). These limits are compared to maximally allowed products of the production cross section and the branching fractions of the signal process in the next-to-minimal supersymmetric extension of the standard model.


Author(s):  
Joseph H. LaCasce

The relations between the kinetic energy spectrum and the second order longitudinal structure function in two dimensions are derived, and several examples are considered. The forward conversion (from spectrum to structure function) is illustrated first with idealized power law spectra, representing turbulent inertial ranges. The forward conversion is also applied to the zonal kinetic energy spectrum of Nastrom and Gage (1985) and the result agrees well with the longitudinal structure function of Lindborg (1999). The inverse conversion (from structure function to spectrum) is tested with data from 2D turbulence simulations. When applied to the theoretical structure function (derived from the forward conversion of the spectrum), the result closely resembles the original spectrum, except at the largest wavenumbers. However the inverse conversion is much less successful when applied to the structure function obtained from pairs of particles in the flow. This is because the inverse conversion favors large pair separations, which are typically noisy with particle data. Fitting the structure function to a polynomial improves the result, but not sufficiently to distinguish the correct inertial range dependencies. Furthermore the inversion of non-local spectra is largely unsuccessful. Thus it appears that focusing on structure functions with Lagrangian data is preferable to estimating spectra.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
V. P. Gonçalves ◽  
D. E. Martins ◽  
M. S. Rangel

AbstractThe production of axionlike particles (ALPs) with small masses in ultraperipheral Pb–p and Pb–Pb collisions at the LHC is investigated. The cross section and kinematical distributions associated to the diphoton final state produced in the $$\gamma \gamma \rightarrow a \rightarrow \gamma \gamma $$ γ γ → a → γ γ subprocesses are estimated considering a realistic set of kinematical cuts. A detailed analysis of the backgrounds is performed and the expected sensitivity to the ALP production is derived. Our results demonstrate that a future experimental analysis of the exclusive diphoton production for the forward rapidities probed by the LHCb detector can improve the existing exclusion limits on the ALP–photon coupling in the mass range 2 GeV $$\le m_a \le $$ ≤ m a ≤ 5 GeV.


Sign in / Sign up

Export Citation Format

Share Document