Quantum gravity

The nature of the search for a quantum theory of gravity has undergone significant changes over the last few years. This is partly because the success of renormalized Yang-Mills gauge theory has stimulated interest in quantum field theory leading to a number of new ideas (for example instantons, solitons, monopoles, asymptotic freedom) which, focusing as they do on non-perturbative aspects, are potentially of considerable importance in a gravitational context. There has also been the development of supersymmetry and the associated supergravity theories for which the prognosis for quantization is brighter than normal General Relativity. Finally, a major impact was made by Hawking’s (1975) discovery of the thermal radiation produced when a quantum field propagates in a black hole background. This leads to a remarkable synthesis of thermodynamics, quantum theory and general relativity whose significance for physics has still not yet been fully explored. Traditionally, the methods for quantizing the gravitational field have been divided into ‘canonical’ and ‘covariant’ (Isham et al. 1975). A number of years ago the main attack on the canonical front was the quantization of the classical constraints


Author(s):  
Roman G. Shulyakovsky ◽  
Alexander S. Gribowsky ◽  
Alexander S. Garkun ◽  
Maxim N. Nevmerzhitsky ◽  
Alexei O. Shaplov ◽  
...  

Instantons are non-trivial solutions of classical Euclidean equations of motion with a finite action. They provide stationary phase points in the path integral for tunnel amplitude between two topologically distinct vacua. It make them useful in many applications of quantum theory, especially for describing the wave function of systems with a degenerate vacua in the framework of the path integrals formalism. Our goal is to introduce the current situation about research on instantons and prepare for experiments. In this paper we give a review of instanton effects in quantum theory. We find in stanton solutions in some quantum mechanical problems, namely, in the problems of the one-dimensional motion of a particle in two-well and periodic potentials. We describe known instantons in quantum field theory that arise, in particular, in the two-dimensional Abelian Higgs model and in SU(2) Yang – Mills gauge fields. We find instanton solutions of two-dimensional scalar field models with sine-Gordon and double-well potentials in a limited spatial volume. We show that accounting of instantons significantly changes the form of the Yukawa potential for the sine-Gordon model in two dimensions.



10.14311/1189 ◽  
2010 ◽  
Vol 50 (3) ◽  
Author(s):  
J. Mickelsson

In this paper I shall discuss the role of group cohomology in quantum mechanics and quantum field theory. First, I recall how cocycles of degree 1 and 2 appear naturally in the context of gauge anomalies. Then we investigate how group cohomology of degree 3 comes from a prolongation problem for group extensions and we discuss its role in quantum field theory. Finally, we discuss a generalization to representation theory where a representation is replaced by a 1-cocycle or its prolongation by a circle, and point out how this type of situations come up in the quantization of Yang-Mills theory.



2020 ◽  
Vol 811 ◽  
pp. 135934
Author(s):  
Micheal S. Berger ◽  
Zhi Liu


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field hμν(x) and position $$ {x}_i^{\mu}\left({\tau}_i\right) $$ x i μ τ i of each black hole on equal footing. Using these both the 3PM three-body gravitational radiation 〈hμv(k)〉 and 2PM two-body deflection $$ \Delta {p}_i^{\mu } $$ Δ p i μ from classical black hole scattering events are obtained. The latter can also be obtained from the eikonal phase of a 2 → 2 scalar S-matrix, which we show corresponds to the free energy of the WQFT.



In this contribution, my purpose is to study a new mathematical instrument introduced by me in 1958-9: the tensor and spinor propagators. These propagators are extensions of the scalar propagator of Jordan-Pauli which plays an important part in quantum-field theory. It is possible to construct, with these propagators, commutators and anticommutators for the various free fields, in the framework of general relativity theory (see Lichnerowicz 1959 a, b, c , 1960, 1961 a, b, c ; and for an independent introduction of propagators DeWitt & Brehme 1960).



2006 ◽  
Vol 03 (07) ◽  
pp. 1303-1312 ◽  
Author(s):  
WEIGANG QIU ◽  
FEI SUN ◽  
HONGBAO ZHANG

From the modern viewpoint and by the geometric method, this paper provides a concise foundation for the quantum theory of massless spin-3/2 field in Minkowski spacetime, which includes both the one-particle's quantum mechanics and the many-particle's quantum field theory. The explicit result presented here is useful for the investigation of spin-3/2 field in various circumstances such as supergravity, twistor programme, Casimir effect, and quantum inequality.



2021 ◽  
pp. 304-328
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Loop diagrams often yield ultraviolet divergent integrals. We introduce the concept of one-particle irreducible diagrams and develop the power counting argument which makes possible the classification of quantum field theories into non-renormalisable, renormalisable and super-renormalisable. We describe some regularisation schemes with particular emphasis on dimensional regularisation. The renormalisation programme is described at one loop order for φ‎4 and QED. We argue, without presenting the detailed proof, that the programme can be extended to any finite order in the perturbation expansion for every renormalisable (or super-renormalisable) quantum field theory. We derive the equation of the renormalisation group and explain how it can be used in order to study the asymptotic behaviour of Green functions. This makes it possible to introduce the concept of asymptotic freedom.



Sign in / Sign up

Export Citation Format

Share Document