Atomic ground state energy in multiply connected universes

We consider a hydrogen atom interacting with electromagnetic vacuum fluctuations in a variety of multiply connected universes, and calculate, to order e 2 , the shift in energy of its ground state from the value it would take in Minkowski space. The classical dipole self-interaction is also included and, for investigation, we choose universes with underlying manifolds R 1 ⊗ T 3 , R 1 ⊗ B 1 and R 1 ⊗ G 2 upon each of which we impose a flat metric. In all cases, we find the energy shift to be proportional to the atom’s static polarizability.

2007 ◽  
Author(s):  
Salvador A. Cruz ◽  
Eugenio Ley-Koo ◽  
Remigio Cabrera-Trujillo ◽  
Theodore E. Simos ◽  
George Maroulis

1994 ◽  
Vol 09 (20) ◽  
pp. 3683-3705
Author(s):  
J.Y. KIM ◽  
Y.S. MYUNG ◽  
S.H. YI

We derive the second and third virial coefficients and the ground state energy shift for charged anyons within the Hartree-Fock approximation. A second quantization scheme at finite temperature is introduced for this calculation up to the second order and the vertex is composed of anyonic, point, constant as well as Coulomb interactions. The thermodynamic potential for the second order correlation diagram of Coulomb interaction leads to the logarithmic divergence (V ln V). Hence, we find the heat capacity and the correlation energy of anyons without Coulomb-Coulomb interaction. Finally, we discuss the magnetic-field-induced localization at low filling ν, including the Wigner crystal phase.


1993 ◽  
Vol 08 (04) ◽  
pp. 341-348 ◽  
Author(s):  
YUN SOO MYUNG ◽  
J.M. CHOI ◽  
M.J. UM ◽  
C. JUE

We study N-anyon of the α-statistics in a uniform magnetic field, to investigate certain properties of the ground state of a fractional statistics. Using the improved bosonic end-perturbation theory, we obtain the first order perturbative energy shift of the ground state energy. It is realized that there exists a second order perturbative energy with Landau levels.


2004 ◽  
Vol 18 (20n21) ◽  
pp. 2887-2899 ◽  
Author(s):  
RUI-QIANG WANG ◽  
HONG-JING XIE ◽  
YOU-BIN YU

The polaronic correction to the ground-state energy of the electron confined in a cylindrical quantum dot (QD) subject to electric and magnetic fields along the growth axis has been investigated. Using a combinative approach of perturbative theory and variational wavefunction, calculations are performed for an infinitely deep confinement potential outside the QD within the effective mass and adiabatic approximation. We have treated the system by taking into consideration the interaction of the electron with the confined longitudinal optical (LO) phonons as well as the side surface (SSO) and the top surface (TSO) optical phonons.1,2 The ground-state energy shift is obtained as a function of the cylindrical radius and the strength of electric and magnetic fields. The results show that the magnetic field heavily enhances the three types of phonon mode contribution to the correction of the electron ground-state energy while the electric field only improves the contribution of surface phonons (SSO and TSO) but decreases the contribution of LO phonons.


2018 ◽  
Vol 64 (4) ◽  
pp. 399
Author(s):  
Norberto Aquino ◽  
Alejandro Rojas ◽  
Henry Montgomery Jr.

We computed accurate values for the ground state energy of a hydrogen atom by a finite spherical barrier of height V0 as a function of the confinement radius . We consider the nucleus as a sphere with a uniform charge distribution instead of as a point particle. The contribution to the ground state energy due to the finite nuclear size is computed as a function of the confinement radius,  and the height of the barrier, V0, using time-independent perturbation theory. For an impenetrable cavity with .5 au, we found that this energy correction is fifty times higher than the corresponding value for the free hydrogen atom. For a finite value of V0,we found that the maximum of the energy correction is reached at a value  which very is close to the position at which the electron density is most compact around to the nucleus. This is confirmed though the Shannon entropy in configuration space.


Sign in / Sign up

Export Citation Format

Share Document