Numerical experiments in boundary-layer stability

Numerical solution of the three-dimensional incompressible Navier-Stokes equations is used to study the instability of a flat-plate boundary layer in a manner analogous to the vibrating-ribbon experiments. Flow field structures are observed which are very similar to those found in the vibrating-ribbon experiment to which computational initial conditions have been matched. Stream wise periodicity is assumed in the simulation so that the evolution occurs in time, but the events that constitute the instability are so similar to the spatially occurring ones of the laboratory that it seems clear the physical processes involved are the same. A spectral and finite difference numerical algorithm is employed in the simulation.

1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Volume 3 ◽  
2004 ◽  
Author(s):  
Erik D. Svensson

In this work we computationally characterize fluid mixing in a number of passive microfluidic mixers. Generally, in order to systematically study and characterize mixing in realistic fluid systems we (1) compute the fluid flow in the systems by solving the stationary three-dimensional Navier-Stokes equations or Stokes equations with a finite element method, and (2) compute various measures indicating the degree of mixing based on concepts from dynamical systems theory, i.e., the sensitive dependence on initial conditions and mixing variance.


2016 ◽  
pp. 92-97
Author(s):  
R. E. Volkov ◽  
A. G. Obukhov

The rectangular parallelepiped explicit difference schemes for the numerical solution of the complete built system of Navier-Stokes equations. These solutions describe the three-dimensional flow of a compressible viscous heat-conducting gas in a rising swirling flows, provided the forces of gravity and Coriolis. This assumes constancy of the coefficient of viscosity and thermal conductivity. The initial conditions are the features that are the exact analytical solution of the complete Navier-Stokes equations. Propose specific boundary conditions under which the upward flow of gas is modeled by blowing through the square hole in the upper surface of the computational domain. A variant of parallelization algorithm for calculating gas dynamic and energy characteristics. The results of calculations of gasdynamic parameters dependency on the speed of the vertical blowing by the time the flow of a steady state flow.


1990 ◽  
Vol 221 ◽  
pp. 311-347 ◽  
Author(s):  
H. Fasel ◽  
U. Konzelmann

Non-parallel effects which are due to the growing boundary layer are investigated by direct numerical integration of the complete Navier-Stokes equations for incompressible flows. The problem formulation is spatial, i.e. disturbances may grow or decay in the downstream direction as in the physical experiments. In the past various non-parallel theories were published that differ considerably from each other in both approach and interpretation of the results. In this paper a detailed comparison of the Navier-Stokes calculation with the various non-parallel theories is provided. It is shown, that the good agreement of some of the theories with experiments is fortuitous and that the difference between experiments and theories concerning the branch I neutral location cannot be explained by non-parallel effects.


1995 ◽  
Vol 298 ◽  
pp. 211-248 ◽  
Author(s):  
U. Rist ◽  
H. Fasel

The three-dimensional development of controlled transition in a flat-plate boundary layer is investigated by direct numerical simulation (DNS) using the complete Navier-Stokes equations. The numerical investigations are based on the so-called spatial model, thus allowing realistic simulations of spatially developing transition phenomena as observed in laboratory experiments. For solving the Navier-Stokes equations, an efficient and accurate numerical method was developed employing fourth-order finite differences in the downstream and wall-normal directions and treating the spanwise direction pseudo-spectrally. The present paper focuses on direct simulations of the wind-tunnel experiments by Kachanov et al. (1984, 1985) of fundamental breakdown in controlled transition. The numerical results agreed very well with the experimental measurements up to the second spike stage, in spite of relatively coarse spanwise resolution. Detailed analysis of the numerical data allowed identification of the essential breakdown mechanisms. In particular, from our numerical data, we could identify the dominant shear layers and vortical structures that are associated with this breakdown process.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays

Diverterless supersonic inlet integration for a flight vehicle requires a three-dimensional compression surface (bump) design with an acceptable shock structure and boundary layer diversion; this results in a low drag induction system with acceptable propulsive efficiency. In this investigation, a computational fluid dynamics-based-generated bump is used to design an integrated diverterless supersonic inlet without any bleed mechanism on a forebody with a large wetted area. Numerical solution of the Navier–Stokes equations simulates the flow pattern of the configuration. The forebody design analysis includes simulating the effects of angle of attack and sideslip by dependent computational domains. Results demonstrate the ability of the bump surface to keep the shock structures in an operational mode even at high supersonic angles of attack. Analysis of shock structures and shock wave boundary layer interactions at supersonic maneuver conditions indicate that the aerodynamic efficiency of the diverterless supersonic inlet in conditions with a thick boundary layer and high angles of attack is sufficient to ensure operation throughout the supersonic flight envelope.


2002 ◽  
Vol 450 ◽  
pp. 1-33 ◽  
Author(s):  
HERMANN F. FASEL

Direct numerical simulations (DNS) of the Navier–Stokes equations are used to investigate the role of the Klebanoff-mode in laminar–turbulent transition in a flatplate boundary layer. To model the effects of free-stream turbulence, volume forces are used to generate low-frequency streamwise vortices outside the boundary layer. A suction/blowing slot at the wall is used to generate a two-dimensional Tollmien–Schlichting (TS) wave inside the boundary layer. The characteristics of the fluctuations inside the boundary layer agree very well with those measured in experiments. It is shown how the interaction of the Klebanoff-mode with the two-dimensional TS-wave leads to the formation of three-dimensional TS-wavepackets. When the disturbance amplitudes reach a critical level, a fundamental resonance-type secondary instability causes the breakdown of the TS-wavepackets into turbulent spots.


2019 ◽  
Vol 196 ◽  
pp. 00016
Author(s):  
Gleb Kolosov ◽  
Alexander Semenov ◽  
Alexey Yatskikh

The results of a numerical study of the development of periodic pulsations in a supersonic boundary layer on a flat plate are presented at a Mach number of 2.5 and a unit Reynolds number of 8×106 m–1. Using the software complex ANSYS, the complete Navier-Stokes equations were solved. Periodic mass flow disturbances with a frequency of 20 kHz were introduced into the boundary layer through a small-diameter hole on the surface of the model. Downstream the profiles of the longitudinal mass flow pulsations were recorded, and spectral analysis of the data was carried out. The main characteristics of the development of unstable disturbances in both physical and wave spaces are obtained.


Sign in / Sign up

Export Citation Format

Share Document